This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omeu : existence part. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeulem1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ On ) | |
| 2 | onsucb | ⊢ ( 𝐵 ∈ On ↔ suc 𝐵 ∈ On ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → suc 𝐵 ∈ On ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) | |
| 5 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 6 | 5 | biimpar | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
| 8 | omword2 | ⊢ ( ( ( suc 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) ) | |
| 9 | 3 4 7 8 | syl21anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) ) |
| 10 | sucidg | ⊢ ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 ) | |
| 11 | ssel | ⊢ ( suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) → ( 𝐵 ∈ suc 𝐵 → 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) ) | |
| 12 | 10 11 | syl5 | ⊢ ( suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) ) |
| 13 | 9 1 12 | sylc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) |
| 14 | suceq | ⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o suc 𝑥 ) = ( 𝐴 ·o suc 𝐵 ) ) |
| 16 | 15 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) ) |
| 17 | 16 | rspcev | ⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ) |
| 18 | 1 13 17 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ) |
| 19 | suceq | ⊢ ( 𝑥 = 𝑧 → suc 𝑥 = suc 𝑧 ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ·o suc 𝑥 ) = ( 𝐴 ·o suc 𝑧 ) ) |
| 21 | 20 | eleq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
| 22 | 21 | onminex | ⊢ ( ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) → ∃ 𝑥 ∈ On ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
| 23 | vex | ⊢ 𝑥 ∈ V | |
| 24 | 23 | elon | ⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
| 25 | ordzsl | ⊢ ( Ord 𝑥 ↔ ( 𝑥 = ∅ ∨ ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥 ) ) | |
| 26 | 24 25 | bitri | ⊢ ( 𝑥 ∈ On ↔ ( 𝑥 = ∅ ∨ ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥 ) ) |
| 27 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) | |
| 28 | om0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 29 | 27 28 | sylan9eqr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∅ ) → ( 𝐴 ·o 𝑥 ) = ∅ ) |
| 30 | ne0i | ⊢ ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) → ( 𝐴 ·o 𝑥 ) ≠ ∅ ) | |
| 31 | 30 | necon2bi | ⊢ ( ( 𝐴 ·o 𝑥 ) = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 32 | 29 31 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∅ ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 33 | 32 | ex | ⊢ ( 𝐴 ∈ On → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 34 | 33 | a1d | ⊢ ( 𝐴 ∈ On → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) ) |
| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) ) |
| 36 | 35 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 37 | simp3 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → 𝑥 = suc 𝑤 ) | |
| 38 | simp2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) | |
| 39 | raleq | ⊢ ( 𝑥 = suc 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ ∀ 𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) | |
| 40 | vex | ⊢ 𝑤 ∈ V | |
| 41 | 40 | sucid | ⊢ 𝑤 ∈ suc 𝑤 |
| 42 | suceq | ⊢ ( 𝑧 = 𝑤 → suc 𝑧 = suc 𝑤 ) | |
| 43 | 42 | oveq2d | ⊢ ( 𝑧 = 𝑤 → ( 𝐴 ·o suc 𝑧 ) = ( 𝐴 ·o suc 𝑤 ) ) |
| 44 | 43 | eleq2d | ⊢ ( 𝑧 = 𝑤 → ( 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
| 45 | 44 | notbid | ⊢ ( 𝑧 = 𝑤 → ( ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
| 46 | 45 | rspcv | ⊢ ( 𝑤 ∈ suc 𝑤 → ( ∀ 𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
| 47 | 41 46 | ax-mp | ⊢ ( ∀ 𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) |
| 48 | 39 47 | biimtrdi | ⊢ ( 𝑥 = suc 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
| 49 | 37 38 48 | sylc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) |
| 50 | oveq2 | ⊢ ( 𝑥 = suc 𝑤 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑤 ) ) | |
| 51 | 50 | eleq2d | ⊢ ( 𝑥 = suc 𝑤 → ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
| 52 | 51 | notbid | ⊢ ( 𝑥 = suc 𝑤 → ( ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ↔ ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
| 53 | 52 | biimpar | ⊢ ( ( 𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 54 | 37 49 53 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 55 | 54 | 3expia | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 56 | 55 | rexlimdvw | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 57 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ ¬ ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) | |
| 58 | simpr | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → 𝐴 ∈ On ) | |
| 59 | 23 | a1i | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → 𝑥 ∈ V ) |
| 60 | simpl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → Lim 𝑥 ) | |
| 61 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ) | |
| 62 | 58 59 60 61 | syl12anc | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ) |
| 63 | 62 | eleq2d | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ↔ 𝐵 ∈ ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ) ) |
| 64 | eliun | ⊢ ( 𝐵 ∈ ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o 𝑧 ) ) | |
| 65 | limord | ⊢ ( Lim 𝑥 → Ord 𝑥 ) | |
| 66 | 65 | 3ad2ant1 | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → Ord 𝑥 ) |
| 67 | 66 24 | sylibr | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ On ) |
| 68 | simp3 | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) | |
| 69 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ On ) | |
| 70 | 67 68 69 | syl2anc | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ On ) |
| 71 | onsuc | ⊢ ( 𝑧 ∈ On → suc 𝑧 ∈ On ) | |
| 72 | 70 71 | syl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → suc 𝑧 ∈ On ) |
| 73 | simp2 | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝐴 ∈ On ) | |
| 74 | sssucid | ⊢ 𝑧 ⊆ suc 𝑧 | |
| 75 | omwordi | ⊢ ( ( 𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ suc 𝑧 → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o suc 𝑧 ) ) ) | |
| 76 | 74 75 | mpi | ⊢ ( ( 𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o suc 𝑧 ) ) |
| 77 | 70 72 73 76 | syl3anc | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o suc 𝑧 ) ) |
| 78 | 77 | sseld | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → ( 𝐵 ∈ ( 𝐴 ·o 𝑧 ) → 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
| 79 | 78 | 3expia | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ 𝑥 → ( 𝐵 ∈ ( 𝐴 ·o 𝑧 ) → 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) ) |
| 80 | 79 | reximdvai | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o 𝑧 ) → ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
| 81 | 64 80 | biimtrid | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) → ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
| 82 | 63 81 | sylbid | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
| 83 | 82 | con3d | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ¬ ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 84 | 57 83 | biimtrid | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 85 | 84 | expimpd | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 86 | 85 | com12 | ⊢ ( ( 𝐴 ∈ On ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( Lim 𝑥 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 87 | 86 | 3ad2antl1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( Lim 𝑥 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 88 | 36 56 87 | 3jaod | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( ( 𝑥 = ∅ ∨ ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 89 | 26 88 | biimtrid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 ∈ On → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 90 | 89 | impr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
| 91 | simpl1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → 𝐴 ∈ On ) | |
| 92 | simprr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → 𝑥 ∈ On ) | |
| 93 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) | |
| 94 | 91 92 93 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
| 95 | simpl2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → 𝐵 ∈ On ) | |
| 96 | ontri1 | ⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) | |
| 97 | 94 95 96 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 98 | 90 97 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) |
| 99 | oawordex | ⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) | |
| 100 | 94 95 99 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 101 | 98 100 | mpbid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
| 102 | 101 | 3adantr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
| 103 | simp3r | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) | |
| 104 | simp21 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ) | |
| 105 | simp11 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝐴 ∈ On ) | |
| 106 | simp23 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝑥 ∈ On ) | |
| 107 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) | |
| 108 | 105 106 107 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 109 | 104 108 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝐵 ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 110 | 103 109 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
| 111 | simp3l | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝑦 ∈ On ) | |
| 112 | 105 106 93 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
| 113 | oaord | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) | |
| 114 | 111 105 112 113 | syl3anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
| 115 | 110 114 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝑦 ∈ 𝐴 ) |
| 116 | 115 103 | jca | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 117 | 116 | 3expia | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) → ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) |
| 118 | 117 | reximdv2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 119 | 102 118 | mpd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
| 120 | 119 | expcom | ⊢ ( ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 121 | 120 | 3expia | ⊢ ( ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) |
| 122 | 121 | com13 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 ∈ On → ( ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) |
| 123 | 122 | reximdvai | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 124 | 22 123 | syl5 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
| 125 | 18 124 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |