This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997) (Proof shortened by Mario Carneiro, 20-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onminex.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | onminex | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∃ 𝑥 ∈ On ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onminex.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On | |
| 3 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝜑 ) | |
| 4 | 3 | biimpri | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) |
| 5 | oninton | ⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) |
| 7 | onminesb | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) | |
| 8 | onss | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On → ∩ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ) | |
| 9 | 6 8 | syl | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ) |
| 10 | 9 | sseld | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } → 𝑦 ∈ On ) ) |
| 11 | 1 | onnminsb | ⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } → ¬ 𝜓 ) ) |
| 12 | 10 11 | syli | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } → ¬ 𝜓 ) ) |
| 13 | 12 | ralrimiv | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } ¬ 𝜓 ) |
| 14 | dfsbcq2 | ⊢ ( 𝑧 = ∩ { 𝑥 ∈ On ∣ 𝜑 } → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) ) | |
| 15 | raleq | ⊢ ( 𝑧 = ∩ { 𝑥 ∈ On ∣ 𝜑 } → ( ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ↔ ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } ¬ 𝜓 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑧 = ∩ { 𝑥 ∈ On ∣ 𝜑 } → ( ( [ 𝑧 / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) ↔ ( [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } ¬ 𝜓 ) ) ) |
| 17 | 16 | rspcev | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ∧ ( [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝜑 } ¬ 𝜓 ) ) → ∃ 𝑧 ∈ On ( [ 𝑧 / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) ) |
| 18 | 6 7 13 17 | syl12anc | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∃ 𝑧 ∈ On ( [ 𝑧 / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) ) |
| 19 | nfv | ⊢ Ⅎ 𝑧 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝜓 ) | |
| 20 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 21 | nfv | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 | |
| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑥 ( [ 𝑧 / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) |
| 23 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 24 | raleq | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ¬ 𝜓 ↔ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝜓 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) ) ) |
| 26 | 19 22 25 | cbvrexw | ⊢ ( ∃ 𝑥 ∈ On ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝜓 ) ↔ ∃ 𝑧 ∈ On ( [ 𝑧 / 𝑥 ] 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝜓 ) ) |
| 27 | 18 26 | sylibr | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∃ 𝑥 ∈ On ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝜓 ) ) |