This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omeu : uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeulem2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐷 ∈ On ) | |
| 2 | eloni | ⊢ ( 𝐷 ∈ On → Ord 𝐷 ) | |
| 3 | ordsucss | ⊢ ( Ord 𝐷 → ( 𝐵 ∈ 𝐷 → suc 𝐵 ⊆ 𝐷 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → suc 𝐵 ⊆ 𝐷 ) ) |
| 5 | simp2l | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐵 ∈ On ) | |
| 6 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → suc 𝐵 ∈ On ) |
| 8 | simp1l | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐴 ∈ On ) | |
| 9 | simp1r | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐴 ≠ ∅ ) | |
| 10 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 12 | 9 11 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ∅ ∈ 𝐴 ) |
| 13 | omword | ⊢ ( ( ( suc 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc 𝐵 ⊆ 𝐷 ↔ ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ) ) | |
| 14 | 7 1 8 12 13 | syl31anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( suc 𝐵 ⊆ 𝐷 ↔ ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ) ) |
| 15 | 4 14 | sylibd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ) ) |
| 16 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐷 ) ∈ On ) | |
| 17 | 8 1 16 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐴 ·o 𝐷 ) ∈ On ) |
| 18 | simp3r | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐸 ∈ 𝐴 ) | |
| 19 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐸 ∈ 𝐴 ) → 𝐸 ∈ On ) | |
| 20 | 8 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐸 ∈ On ) |
| 21 | oaword1 | ⊢ ( ( ( 𝐴 ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( 𝐴 ·o 𝐷 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) | |
| 22 | sstr | ⊢ ( ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ∧ ( 𝐴 ·o 𝐷 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) | |
| 23 | 22 | expcom | ⊢ ( ( 𝐴 ·o 𝐷 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 24 | 21 23 | syl | ⊢ ( ( ( 𝐴 ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 25 | 17 20 24 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 26 | 15 25 | syld | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 27 | simp2r | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) | |
| 28 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ On ) | |
| 29 | 8 27 28 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐶 ∈ On ) |
| 30 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 31 | 8 5 30 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 32 | oaord | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( 𝐶 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) ) | |
| 33 | 32 | biimpa | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 34 | 29 8 31 27 33 | syl31anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 35 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) | |
| 36 | 8 5 35 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 37 | 34 36 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( 𝐴 ·o suc 𝐵 ) ) |
| 38 | ssel | ⊢ ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( 𝐴 ·o suc 𝐵 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) | |
| 39 | 26 37 38 | syl6ci | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 40 | simpr | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → 𝐶 ∈ 𝐸 ) | |
| 41 | oaord | ⊢ ( ( 𝐶 ∈ On ∧ 𝐸 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( 𝐶 ∈ 𝐸 ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) ) ) | |
| 42 | 40 41 | imbitrid | ⊢ ( ( 𝐶 ∈ On ∧ 𝐸 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) ) ) |
| 43 | oveq2 | ⊢ ( 𝐵 = 𝐷 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐷 ) ) | |
| 44 | 43 | oveq1d | ⊢ ( 𝐵 = 𝐷 → ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 46 | 45 | eleq2d | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 47 | 42 46 | mpbidi | ⊢ ( ( 𝐶 ∈ On ∧ 𝐸 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 48 | 29 20 31 47 | syl3anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 49 | 39 48 | jaod | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |