This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for occl . (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | occl.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℋ ) | |
| occl.2 | ⊢ ( 𝜑 → 𝐹 ∈ Cauchy ) | ||
| occl.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) | ||
| occl.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| Assertion | occllem | ⊢ ( 𝜑 → ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | occl.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℋ ) | |
| 2 | occl.2 | ⊢ ( 𝜑 → 𝐹 ∈ Cauchy ) | |
| 3 | occl.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) | |
| 4 | occl.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 5 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 6 | 5 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Haus ) |
| 8 | ax-hcompl | ⊢ ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ) | |
| 9 | hlimf | ⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ | |
| 10 | ffn | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 ) | |
| 11 | 9 10 | ax-mp | ⊢ ⇝𝑣 Fn dom ⇝𝑣 |
| 12 | fnbr | ⊢ ( ( ⇝𝑣 Fn dom ⇝𝑣 ∧ 𝐹 ⇝𝑣 𝑥 ) → 𝐹 ∈ dom ⇝𝑣 ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝐹 ⇝𝑣 𝑥 → 𝐹 ∈ dom ⇝𝑣 ) |
| 14 | 13 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 → 𝐹 ∈ dom ⇝𝑣 ) |
| 15 | 2 8 14 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝𝑣 ) |
| 16 | ffun | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 17 | funfvbrb | ⊢ ( Fun ⇝𝑣 → ( 𝐹 ∈ dom ⇝𝑣 ↔ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) ) | |
| 18 | 9 16 17 | mp2b | ⊢ ( 𝐹 ∈ dom ⇝𝑣 ↔ 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) |
| 19 | 15 18 | sylib | ⊢ ( 𝜑 → 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) ) |
| 20 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 21 | eqid | ⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) | |
| 22 | 20 21 | hhims | ⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 23 | eqid | ⊢ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) = ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) | |
| 24 | 20 22 23 | hhlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 25 | resss | ⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) | |
| 26 | 24 25 | eqsstri | ⊢ ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
| 27 | 26 | ssbri | ⊢ ( 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ⇝𝑣 ‘ 𝐹 ) ) |
| 28 | 19 27 | syl | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ⇝𝑣 ‘ 𝐹 ) ) |
| 29 | 21 | hilxmet | ⊢ ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) |
| 30 | 23 | mopntopon | ⊢ ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ) |
| 31 | 29 30 | mp1i | ⊢ ( 𝜑 → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ ( TopOn ‘ ℋ ) ) |
| 32 | 31 | cnmptid | ⊢ ( 𝜑 → ( 𝑥 ∈ ℋ ↦ 𝑥 ) ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
| 33 | 1 4 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℋ ) |
| 34 | 31 31 33 | cnmptc | ⊢ ( 𝜑 → ( 𝑥 ∈ ℋ ↦ 𝐵 ) ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ) |
| 35 | 20 | hhnv | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
| 36 | 20 | hhip | ⊢ ·ih = ( ·𝑖OLD ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 37 | 36 22 23 5 | dipcn | ⊢ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec → ·ih ∈ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ×t ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 38 | 35 37 | mp1i | ⊢ ( 𝜑 → ·ih ∈ ( ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ×t ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 39 | 31 32 34 38 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 40 | 28 39 | lmcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( ⇝𝑣 ‘ 𝐹 ) ) ) |
| 41 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 42 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = 0 ) ) ) | |
| 43 | 1 42 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = 0 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = 0 ) ) ) |
| 45 | 41 44 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = 0 ) ) |
| 46 | 45 | simpld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℋ ) |
| 47 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ·ih 𝐵 ) = ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) ) | |
| 48 | eqid | ⊢ ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) | |
| 49 | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) ∈ V | |
| 50 | 47 48 49 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) ) |
| 51 | 46 50 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) ) |
| 52 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) ) | |
| 53 | 52 | eqeq1d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = 0 ↔ ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) = 0 ) ) |
| 54 | 45 | simprd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑘 ) ·ih 𝑥 ) = 0 ) |
| 55 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ 𝐴 ) |
| 56 | 53 54 55 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ·ih 𝐵 ) = 0 ) |
| 57 | 51 56 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 0 ) |
| 58 | ocss | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 59 | 1 58 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
| 60 | 3 59 | fssd | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℋ ) |
| 61 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 62 | 60 61 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 63 | c0ex | ⊢ 0 ∈ V | |
| 64 | 63 | fvconst2 | ⊢ ( 𝑘 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 65 | 64 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑘 ) = 0 ) |
| 66 | 57 62 65 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) ) |
| 67 | 66 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) ) |
| 68 | ovex | ⊢ ( 𝑥 ·ih 𝐵 ) ∈ V | |
| 69 | 68 48 | fnmpti | ⊢ ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) Fn ℋ |
| 70 | fnfco | ⊢ ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) Fn ℋ ∧ 𝐹 : ℕ ⟶ ℋ ) → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) Fn ℕ ) | |
| 71 | 69 60 70 | sylancr | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) Fn ℕ ) |
| 72 | 63 | fconst | ⊢ ( ℕ × { 0 } ) : ℕ ⟶ { 0 } |
| 73 | ffn | ⊢ ( ( ℕ × { 0 } ) : ℕ ⟶ { 0 } → ( ℕ × { 0 } ) Fn ℕ ) | |
| 74 | 72 73 | ax-mp | ⊢ ( ℕ × { 0 } ) Fn ℕ |
| 75 | eqfnfv | ⊢ ( ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) Fn ℕ ∧ ( ℕ × { 0 } ) Fn ℕ ) → ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) ) ) | |
| 76 | 71 74 75 | sylancl | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑘 ∈ ℕ ( ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( ℕ × { 0 } ) ‘ 𝑘 ) ) ) |
| 77 | 67 76 | mpbird | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ∘ 𝐹 ) = ( ℕ × { 0 } ) ) |
| 78 | fvex | ⊢ ( ⇝𝑣 ‘ 𝐹 ) ∈ V | |
| 79 | 78 | hlimveci | ⊢ ( 𝐹 ⇝𝑣 ( ⇝𝑣 ‘ 𝐹 ) → ( ⇝𝑣 ‘ 𝐹 ) ∈ ℋ ) |
| 80 | oveq1 | ⊢ ( 𝑥 = ( ⇝𝑣 ‘ 𝐹 ) → ( 𝑥 ·ih 𝐵 ) = ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) ) | |
| 81 | ovex | ⊢ ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) ∈ V | |
| 82 | 80 48 81 | fvmpt | ⊢ ( ( ⇝𝑣 ‘ 𝐹 ) ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( ⇝𝑣 ‘ 𝐹 ) ) = ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) ) |
| 83 | 19 79 82 | 3syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℋ ↦ ( 𝑥 ·ih 𝐵 ) ) ‘ ( ⇝𝑣 ‘ 𝐹 ) ) = ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) ) |
| 84 | 40 77 83 | 3brtr3d | ⊢ ( 𝜑 → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) ) |
| 85 | 5 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 86 | 85 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 87 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 88 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 89 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 90 | 89 | lmconst | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 91 | 86 87 88 90 | syl3anc | ⊢ ( 𝜑 → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 92 | 7 84 91 | lmmo | ⊢ ( 𝜑 → ( ( ⇝𝑣 ‘ 𝐹 ) ·ih 𝐵 ) = 0 ) |