This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hilmet.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| Assertion | hilxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilmet.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| 2 | 1 | hilmet | ⊢ 𝐷 ∈ ( Met ‘ ℋ ) |
| 3 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ ℋ ) → 𝐷 ∈ ( ∞Met ‘ ℋ ) ) | |
| 4 | 2 3 | ax-mp | ⊢ 𝐷 ∈ ( ∞Met ‘ ℋ ) |