This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipcn.p | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| dipcn.c | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | ||
| dipcn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| dipcn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | dipcn | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipcn.p | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 2 | dipcn.c | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 3 | dipcn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 4 | dipcn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 9 | 5 6 7 8 1 | dipfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 = ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
| 10 | 5 2 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐶 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 11 | 3 | mopntopon | ⊢ ( 𝐶 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 12 | 10 11 | syl | ⊢ ( 𝑈 ∈ NrmCVec → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 13 | fzfid | ⊢ ( 𝑈 ∈ NrmCVec → ( 1 ... 4 ) ∈ Fin ) | |
| 14 | 12 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 15 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 16 | 15 | a1i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 17 | ax-icn | ⊢ i ∈ ℂ | |
| 18 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 4 ) → 𝑘 ∈ ℕ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → 𝑘 ∈ ℕ ) |
| 20 | 19 | nnnn0d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → 𝑘 ∈ ℕ0 ) |
| 21 | expcl | ⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 22 | 17 20 21 | sylancr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 23 | 14 14 16 22 | cnmpt2c | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( i ↑ 𝑘 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 24 | 14 14 | cnmpt1st | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 25 | 14 14 | cnmpt2nd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 26 | 2 3 7 4 | smcn | ⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘ 𝑈 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ·𝑠OLD ‘ 𝑈 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 28 | 14 14 23 25 27 | cnmpt22f | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 29 | 2 3 6 | vacn | ⊢ ( 𝑈 ∈ NrmCVec → ( +𝑣 ‘ 𝑈 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( +𝑣 ‘ 𝑈 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 31 | 14 14 24 28 30 | cnmpt22f | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 32 | 8 2 3 4 | nmcnc | ⊢ ( 𝑈 ∈ NrmCVec → ( normCV ‘ 𝑈 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( normCV ‘ 𝑈 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 34 | 14 14 31 33 | cnmpt21f | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 35 | 4 | sqcn | ⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∈ ( 𝐾 Cn 𝐾 ) |
| 36 | 35 | a1i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 37 | oveq1 | ⊢ ( 𝑧 = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) → ( 𝑧 ↑ 2 ) = ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) | |
| 38 | 14 14 34 16 36 37 | cnmpt21 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 39 | 4 | mulcn | ⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 40 | 39 | a1i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 41 | 14 14 23 38 40 | cnmpt22f | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 42 | 4 12 13 12 41 | fsum2cn | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 43 | 15 | a1i | ⊢ ( 𝑈 ∈ NrmCVec → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 44 | 4cn | ⊢ 4 ∈ ℂ | |
| 45 | 4ne0 | ⊢ 4 ≠ 0 | |
| 46 | 4 | divccn | ⊢ ( ( 4 ∈ ℂ ∧ 4 ≠ 0 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 / 4 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 47 | 44 45 46 | mp2an | ⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 / 4 ) ) ∈ ( 𝐾 Cn 𝐾 ) |
| 48 | 47 | a1i | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑧 ∈ ℂ ↦ ( 𝑧 / 4 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 49 | oveq1 | ⊢ ( 𝑧 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) → ( 𝑧 / 4 ) = ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) | |
| 50 | 12 12 42 43 48 49 | cnmpt21 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 51 | 9 50 | eqeltrd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑃 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |