This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| Assertion | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 3 | ablogrpo | ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) | |
| 4 | 2 3 | ax-mp | ⊢ +ℎ ∈ GrpOp |
| 5 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 6 | 5 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 7 | 4 6 | grporn | ⊢ ℋ = ran +ℎ |
| 8 | hilid | ⊢ ( GId ‘ +ℎ ) = 0ℎ | |
| 9 | 8 | eqcomi | ⊢ 0ℎ = ( GId ‘ +ℎ ) |
| 10 | hilvc | ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | |
| 11 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
| 12 | norm-i | ⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) | |
| 13 | 12 | biimpa | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) = 0 ) → 𝑥 = 0ℎ ) |
| 14 | norm-iii | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑦 ·ℎ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) | |
| 15 | norm-ii | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ) | |
| 16 | 7 9 10 11 13 14 15 1 | isnvi | ⊢ 𝑈 ∈ NrmCVec |