This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 8-Aug-2000) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocsh | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 2 | ax-hcompl | ⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) | |
| 3 | vex | ⊢ 𝑓 ∈ V | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 3 4 | breldm | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 7 | 2 6 | syl | ⊢ ( 𝑓 ∈ Cauchy → 𝑓 ∈ dom ⇝𝑣 ) |
| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → 𝑓 ∈ dom ⇝𝑣 ) |
| 9 | hlimf | ⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ | |
| 10 | 9 | ffvelcdmi | ⊢ ( 𝑓 ∈ dom ⇝𝑣 → ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ) |
| 12 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℋ ) | |
| 13 | simpllr | ⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑓 ∈ Cauchy ) | |
| 14 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) | |
| 15 | simpr | ⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 16 | 12 13 14 15 | occllem | ⊢ ( ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) |
| 17 | 16 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) |
| 18 | ocel | ⊢ ( 𝐴 ⊆ ℋ → ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) ) ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐴 ( ( ⇝𝑣 ‘ 𝑓 ) ·ih 𝑥 ) = 0 ) ) ) |
| 20 | 11 17 19 | mpbir2and | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 21 | ffun | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 22 | funfvbrb | ⊢ ( Fun ⇝𝑣 → ( 𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) ) | |
| 23 | 9 21 22 | mp2b | ⊢ ( 𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) |
| 24 | 8 23 | sylib | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) |
| 25 | breq2 | ⊢ ( 𝑥 = ( ⇝𝑣 ‘ 𝑓 ) → ( 𝑓 ⇝𝑣 𝑥 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) ) | |
| 26 | 25 | rspcev | ⊢ ( ( ( ⇝𝑣 ‘ 𝑓 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) |
| 27 | 20 24 26 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) ∧ 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) |
| 28 | 27 | ex | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy ) → ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) ) |
| 30 | isch3 | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ↔ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ ( ⊥ ‘ 𝐴 ) → ∃ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) 𝑓 ⇝𝑣 𝑥 ) ) ) | |
| 31 | 1 29 30 | sylanbrc | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |