This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of Kreyszig p. 26. (Contributed by NM, 31-Jan-2008) (Proof shortened by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmmo.1 | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) | |
| lmmo.4 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) | ||
| lmmo.5 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) | ||
| Assertion | lmmo | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmmo.1 | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) | |
| 2 | lmmo.4 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) | |
| 3 | lmmo.5 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) | |
| 4 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) | |
| 7 | 1zzd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 1 ∈ ℤ ) | |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ 𝐽 ) | |
| 10 | 5 6 7 8 9 | lmcvg | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) |
| 11 | 10 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 12 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝐵 ∈ 𝑦 ) | |
| 13 | 1zzd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 1 ∈ ℤ ) | |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) | |
| 16 | 5 12 13 14 15 | lmcvg | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 18 | 11 17 | anim12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) ) |
| 19 | 5 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 20 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 21 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 22 | ne0i | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( 𝑗 ∈ ℕ → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
| 24 | r19.2z | ⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) | |
| 25 | elin | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) | |
| 26 | n0i | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ∩ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) | |
| 27 | 25 26 | sylbir | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 28 | 27 | rexlimivw | ⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 29 | 24 28 | syl | ⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 30 | 23 29 | sylan | ⊢ ( ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 31 | 30 | rexlimiva | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 32 | 19 31 | sylbir | ⊢ ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 33 | 18 32 | syl6 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 34 | 4 33 | biimtrid | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 35 | 34 | expdimp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 36 | imnan | ⊢ ( ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ¬ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 37 | 35 36 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ¬ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 38 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 39 | 37 38 | sylnibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ¬ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 40 | 39 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) → ¬ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 41 | 40 | nrexdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ¬ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 42 | 41 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 43 | haustop | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) | |
| 44 | 1 43 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 45 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 46 | 44 45 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 47 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) → 𝐴 ∈ ∪ 𝐽 ) | |
| 48 | 46 2 47 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝐽 ) |
| 49 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) → 𝐵 ∈ ∪ 𝐽 ) | |
| 50 | 46 3 49 | syl2anc | ⊢ ( 𝜑 → 𝐵 ∈ ∪ 𝐽 ) |
| 51 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 52 | 51 | hausnei | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝐴 ∈ ∪ 𝐽 ∧ 𝐵 ∈ ∪ 𝐽 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 53 | 52 | 3exp2 | ⊢ ( 𝐽 ∈ Haus → ( 𝐴 ∈ ∪ 𝐽 → ( 𝐵 ∈ ∪ 𝐽 → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) ) |
| 54 | 1 48 50 53 | syl3c | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
| 55 | 54 | necon1bd | ⊢ ( 𝜑 → ( ¬ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝐴 = 𝐵 ) ) |
| 56 | 42 55 | mpd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |