This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for occl . (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | occl.1 | |- ( ph -> A C_ ~H ) |
|
| occl.2 | |- ( ph -> F e. Cauchy ) |
||
| occl.3 | |- ( ph -> F : NN --> ( _|_ ` A ) ) |
||
| occl.4 | |- ( ph -> B e. A ) |
||
| Assertion | occllem | |- ( ph -> ( ( ~~>v ` F ) .ih B ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | occl.1 | |- ( ph -> A C_ ~H ) |
|
| 2 | occl.2 | |- ( ph -> F e. Cauchy ) |
|
| 3 | occl.3 | |- ( ph -> F : NN --> ( _|_ ` A ) ) |
|
| 4 | occl.4 | |- ( ph -> B e. A ) |
|
| 5 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 6 | 5 | cnfldhaus | |- ( TopOpen ` CCfld ) e. Haus |
| 7 | 6 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Haus ) |
| 8 | ax-hcompl | |- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |
|
| 9 | hlimf | |- ~~>v : dom ~~>v --> ~H |
|
| 10 | ffn | |- ( ~~>v : dom ~~>v --> ~H -> ~~>v Fn dom ~~>v ) |
|
| 11 | 9 10 | ax-mp | |- ~~>v Fn dom ~~>v |
| 12 | fnbr | |- ( ( ~~>v Fn dom ~~>v /\ F ~~>v x ) -> F e. dom ~~>v ) |
|
| 13 | 11 12 | mpan | |- ( F ~~>v x -> F e. dom ~~>v ) |
| 14 | 13 | rexlimivw | |- ( E. x e. ~H F ~~>v x -> F e. dom ~~>v ) |
| 15 | 2 8 14 | 3syl | |- ( ph -> F e. dom ~~>v ) |
| 16 | ffun | |- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
|
| 17 | funfvbrb | |- ( Fun ~~>v -> ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) ) |
|
| 18 | 9 16 17 | mp2b | |- ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) |
| 19 | 15 18 | sylib | |- ( ph -> F ~~>v ( ~~>v ` F ) ) |
| 20 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 21 | eqid | |- ( normh o. -h ) = ( normh o. -h ) |
|
| 22 | 20 21 | hhims | |- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 23 | eqid | |- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
|
| 24 | 20 22 23 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
| 25 | resss | |- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
|
| 26 | 24 25 | eqsstri | |- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
| 27 | 26 | ssbri | |- ( F ~~>v ( ~~>v ` F ) -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` F ) ) |
| 28 | 19 27 | syl | |- ( ph -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` F ) ) |
| 29 | 21 | hilxmet | |- ( normh o. -h ) e. ( *Met ` ~H ) |
| 30 | 23 | mopntopon | |- ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) |
| 31 | 29 30 | mp1i | |- ( ph -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) |
| 32 | 31 | cnmptid | |- ( ph -> ( x e. ~H |-> x ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) |
| 33 | 1 4 | sseldd | |- ( ph -> B e. ~H ) |
| 34 | 31 31 33 | cnmptc | |- ( ph -> ( x e. ~H |-> B ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) |
| 35 | 20 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 36 | 20 | hhip | |- .ih = ( .iOLD ` <. <. +h , .h >. , normh >. ) |
| 37 | 36 22 23 5 | dipcn | |- ( <. <. +h , .h >. , normh >. e. NrmCVec -> .ih e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 38 | 35 37 | mp1i | |- ( ph -> .ih e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 39 | 31 32 34 38 | cnmpt12f | |- ( ph -> ( x e. ~H |-> ( x .ih B ) ) e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 40 | 28 39 | lmcn | |- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) ) |
| 41 | 3 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. ( _|_ ` A ) ) |
| 42 | ocel | |- ( A C_ ~H -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) |
|
| 43 | 1 42 | syl | |- ( ph -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( F ` k ) e. ( _|_ ` A ) <-> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) ) |
| 45 | 41 44 | mpbid | |- ( ( ph /\ k e. NN ) -> ( ( F ` k ) e. ~H /\ A. x e. A ( ( F ` k ) .ih x ) = 0 ) ) |
| 46 | 45 | simpld | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. ~H ) |
| 47 | oveq1 | |- ( x = ( F ` k ) -> ( x .ih B ) = ( ( F ` k ) .ih B ) ) |
|
| 48 | eqid | |- ( x e. ~H |-> ( x .ih B ) ) = ( x e. ~H |-> ( x .ih B ) ) |
|
| 49 | ovex | |- ( ( F ` k ) .ih B ) e. _V |
|
| 50 | 47 48 49 | fvmpt | |- ( ( F ` k ) e. ~H -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = ( ( F ` k ) .ih B ) ) |
| 51 | 46 50 | syl | |- ( ( ph /\ k e. NN ) -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = ( ( F ` k ) .ih B ) ) |
| 52 | oveq2 | |- ( x = B -> ( ( F ` k ) .ih x ) = ( ( F ` k ) .ih B ) ) |
|
| 53 | 52 | eqeq1d | |- ( x = B -> ( ( ( F ` k ) .ih x ) = 0 <-> ( ( F ` k ) .ih B ) = 0 ) ) |
| 54 | 45 | simprd | |- ( ( ph /\ k e. NN ) -> A. x e. A ( ( F ` k ) .ih x ) = 0 ) |
| 55 | 4 | adantr | |- ( ( ph /\ k e. NN ) -> B e. A ) |
| 56 | 53 54 55 | rspcdva | |- ( ( ph /\ k e. NN ) -> ( ( F ` k ) .ih B ) = 0 ) |
| 57 | 51 56 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) = 0 ) |
| 58 | ocss | |- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
|
| 59 | 1 58 | syl | |- ( ph -> ( _|_ ` A ) C_ ~H ) |
| 60 | 3 59 | fssd | |- ( ph -> F : NN --> ~H ) |
| 61 | fvco3 | |- ( ( F : NN --> ~H /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) ) |
|
| 62 | 60 61 | sylan | |- ( ( ph /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( x e. ~H |-> ( x .ih B ) ) ` ( F ` k ) ) ) |
| 63 | c0ex | |- 0 e. _V |
|
| 64 | 63 | fvconst2 | |- ( k e. NN -> ( ( NN X. { 0 } ) ` k ) = 0 ) |
| 65 | 64 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( NN X. { 0 } ) ` k ) = 0 ) |
| 66 | 57 62 65 | 3eqtr4d | |- ( ( ph /\ k e. NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) |
| 67 | 66 | ralrimiva | |- ( ph -> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) |
| 68 | ovex | |- ( x .ih B ) e. _V |
|
| 69 | 68 48 | fnmpti | |- ( x e. ~H |-> ( x .ih B ) ) Fn ~H |
| 70 | fnfco | |- ( ( ( x e. ~H |-> ( x .ih B ) ) Fn ~H /\ F : NN --> ~H ) -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN ) |
|
| 71 | 69 60 70 | sylancr | |- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN ) |
| 72 | 63 | fconst | |- ( NN X. { 0 } ) : NN --> { 0 } |
| 73 | ffn | |- ( ( NN X. { 0 } ) : NN --> { 0 } -> ( NN X. { 0 } ) Fn NN ) |
|
| 74 | 72 73 | ax-mp | |- ( NN X. { 0 } ) Fn NN |
| 75 | eqfnfv | |- ( ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) Fn NN /\ ( NN X. { 0 } ) Fn NN ) -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) <-> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) ) |
|
| 76 | 71 74 75 | sylancl | |- ( ph -> ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) <-> A. k e. NN ( ( ( x e. ~H |-> ( x .ih B ) ) o. F ) ` k ) = ( ( NN X. { 0 } ) ` k ) ) ) |
| 77 | 67 76 | mpbird | |- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) o. F ) = ( NN X. { 0 } ) ) |
| 78 | fvex | |- ( ~~>v ` F ) e. _V |
|
| 79 | 78 | hlimveci | |- ( F ~~>v ( ~~>v ` F ) -> ( ~~>v ` F ) e. ~H ) |
| 80 | oveq1 | |- ( x = ( ~~>v ` F ) -> ( x .ih B ) = ( ( ~~>v ` F ) .ih B ) ) |
|
| 81 | ovex | |- ( ( ~~>v ` F ) .ih B ) e. _V |
|
| 82 | 80 48 81 | fvmpt | |- ( ( ~~>v ` F ) e. ~H -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) = ( ( ~~>v ` F ) .ih B ) ) |
| 83 | 19 79 82 | 3syl | |- ( ph -> ( ( x e. ~H |-> ( x .ih B ) ) ` ( ~~>v ` F ) ) = ( ( ~~>v ` F ) .ih B ) ) |
| 84 | 40 77 83 | 3brtr3d | |- ( ph -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( ( ~~>v ` F ) .ih B ) ) |
| 85 | 5 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 86 | 85 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 87 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 88 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 89 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 90 | 89 | lmconst | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 91 | 86 87 88 90 | syl3anc | |- ( ph -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 92 | 7 84 91 | lmmo | |- ( ph -> ( ( ~~>v ` F ) .ih B ) = 0 ) |