This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocel | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocval | ⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑦 ∈ ℋ ∣ ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ 𝐴 ∈ { 𝑦 ∈ ℋ ∣ ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 } ) ) |
| 3 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ·ih 𝑥 ) = ( 𝐴 ·ih 𝑥 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 6 | 5 | elrab | ⊢ ( 𝐴 ∈ { 𝑦 ∈ ℋ ∣ ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 } ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 7 | 2 6 | bitrdi | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |