This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmcnp.3 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| lmcn.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | lmcn | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcnp.3 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 2 | lmcn.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | cntop1 | ⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 5 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 7 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) | |
| 8 | 6 1 7 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | cncnpi | ⊢ ( ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑃 ∈ ∪ 𝐽 ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 11 | 2 8 10 | syl2anc | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 12 | 1 11 | lmcnp | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐺 ‘ 𝑃 ) ) |