This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| Assertion | hhip | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | polid | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih 𝑦 ) = ( ( ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝑥 +ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) | |
| 3 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 4 | 1 | hhba | ⊢ ℋ = ( BaseSet ‘ 𝑈 ) |
| 5 | 1 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
| 6 | 1 | hhsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
| 7 | 1 | hhnm | ⊢ normℎ = ( normCV ‘ 𝑈 ) |
| 8 | eqid | ⊢ ( ·𝑖OLD ‘ 𝑈 ) = ( ·𝑖OLD ‘ 𝑈 ) | |
| 9 | 1 | hhvs | ⊢ −ℎ = ( −𝑣 ‘ 𝑈 ) |
| 10 | 4 5 6 7 8 9 | ipval3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) = ( ( ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝑥 +ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 11 | 3 10 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) = ( ( ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( normℎ ‘ ( 𝑥 +ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝑥 −ℎ ( i ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 12 | 2 11 | eqtr4d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) |
| 13 | 12 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) |
| 14 | ax-hfi | ⊢ ·ih : ( ℋ × ℋ ) ⟶ ℂ | |
| 15 | 4 8 | ipf | ⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ ) |
| 16 | 3 15 | ax-mp | ⊢ ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ |
| 17 | ffn | ⊢ ( ·ih : ( ℋ × ℋ ) ⟶ ℂ → ·ih Fn ( ℋ × ℋ ) ) | |
| 18 | ffn | ⊢ ( ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ → ( ·𝑖OLD ‘ 𝑈 ) Fn ( ℋ × ℋ ) ) | |
| 19 | eqfnov2 | ⊢ ( ( ·ih Fn ( ℋ × ℋ ) ∧ ( ·𝑖OLD ‘ 𝑈 ) Fn ( ℋ × ℋ ) ) → ( ·ih = ( ·𝑖OLD ‘ 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ·ih : ( ℋ × ℋ ) ⟶ ℂ ∧ ( ·𝑖OLD ‘ 𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ ) → ( ·ih = ( ·𝑖OLD ‘ 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) ) |
| 21 | 14 16 20 | mp2an | ⊢ ( ·ih = ( ·𝑖OLD ‘ 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) 𝑦 ) ) |
| 22 | 13 21 | mpbir | ⊢ ·ih = ( ·𝑖OLD ‘ 𝑈 ) |