This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007) (Revised by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmconst.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | lmconst | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝑃 } ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmconst.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → 𝑃 ∈ 𝑋 ) | |
| 3 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 4 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 | 5 1 | eleqtrrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ 𝑍 ) |
| 7 | idd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑃 ∈ 𝑢 → 𝑃 ∈ 𝑢 ) ) | |
| 8 | 7 | ralrimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∈ 𝑢 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) 𝑃 ∈ 𝑢 ) ) |
| 9 | fveq2 | ⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 10 | 9 | raleqdv | ⊢ ( 𝑗 = 𝑀 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑃 ∈ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) 𝑃 ∈ 𝑢 ) ) |
| 11 | 10 | rspcev | ⊢ ( ( 𝑀 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) 𝑃 ∈ 𝑢 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑃 ∈ 𝑢 ) |
| 12 | 6 8 11 | syl6an | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑃 ∈ 𝑢 ) ) |
| 13 | 12 | ralrimivw | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑃 ∈ 𝑢 ) ) |
| 14 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 15 | fconst6g | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑍 × { 𝑃 } ) : 𝑍 ⟶ 𝑋 ) | |
| 16 | 2 15 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝑃 } ) : 𝑍 ⟶ 𝑋 ) |
| 17 | fvconst2g | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 𝑃 } ) ‘ 𝑘 ) = 𝑃 ) | |
| 18 | 2 17 | sylan | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑍 × { 𝑃 } ) ‘ 𝑘 ) = 𝑃 ) |
| 19 | 14 1 3 16 18 | lmbrf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑍 × { 𝑃 } ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑃 ∈ 𝑢 ) ) ) ) |
| 20 | 2 13 19 | mpbir2and | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝑃 } ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |