This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nlmvscn . Compare this proof with the similar elementary proof mulcn2 for continuity of multiplication on CC . (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmvscn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| nlmvscn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| nlmvscn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| nlmvscn.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| nlmvscn.e | ⊢ 𝐸 = ( dist ‘ 𝐹 ) | ||
| nlmvscn.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| nlmvscn.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | ||
| nlmvscn.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| nlmvscn.t | ⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) | ||
| nlmvscn.u | ⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) | ||
| nlmvscn.w | ⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) | ||
| nlmvscn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| nlmvscn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| nlmvscn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| nlmvscn.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| nlmvscn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| nlmvscn.1 | ⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) < 𝑈 ) | ||
| nlmvscn.2 | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) < 𝑇 ) | ||
| Assertion | nlmvscnlem2 | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmvscn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | nlmvscn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | nlmvscn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | nlmvscn.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 5 | nlmvscn.e | ⊢ 𝐸 = ( dist ‘ 𝐹 ) | |
| 6 | nlmvscn.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 7 | nlmvscn.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | |
| 8 | nlmvscn.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 9 | nlmvscn.t | ⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) | |
| 10 | nlmvscn.u | ⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) | |
| 11 | nlmvscn.w | ⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) | |
| 12 | nlmvscn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 13 | nlmvscn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 14 | nlmvscn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 15 | nlmvscn.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 16 | nlmvscn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 17 | nlmvscn.1 | ⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) < 𝑈 ) | |
| 18 | nlmvscn.2 | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) < 𝑇 ) | |
| 19 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 20 | 11 19 | syl | ⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
| 21 | ngpms | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → 𝑊 ∈ MetSp ) |
| 23 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 24 | 11 23 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 25 | 2 1 8 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 26 | 24 13 14 25 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 27 | 2 1 8 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 · 𝑌 ) ∈ 𝑉 ) |
| 28 | 24 15 16 27 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 · 𝑌 ) ∈ 𝑉 ) |
| 29 | 2 4 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 30 | 22 26 28 29 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 31 | 2 1 8 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 · 𝑌 ) ∈ 𝑉 ) |
| 32 | 24 13 16 31 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ 𝑉 ) |
| 33 | 2 4 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ∈ ℝ ) |
| 34 | 22 26 32 33 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ∈ ℝ ) |
| 35 | 2 4 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ ( 𝐵 · 𝑌 ) ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 36 | 22 32 28 35 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 37 | 34 36 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) ∈ ℝ ) |
| 38 | 12 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 39 | 2 4 | mstri | ⊢ ( ( 𝑊 ∈ MetSp ∧ ( ( 𝐵 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑌 ) ∈ 𝑉 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ≤ ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) ) |
| 40 | 22 26 28 32 39 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ≤ ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) ) |
| 41 | 1 | nlmngp2 | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 42 | 11 41 | syl | ⊢ ( 𝜑 → 𝐹 ∈ NrmGrp ) |
| 43 | 3 7 | nmcl | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐵 ) ∈ ℝ ) |
| 44 | 42 13 43 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐵 ) ∈ ℝ ) |
| 45 | 3 7 | nmge0 | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐵 ∈ 𝐾 ) → 0 ≤ ( 𝐴 ‘ 𝐵 ) ) |
| 46 | 42 13 45 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 ‘ 𝐵 ) ) |
| 47 | 44 46 | ge0p1rpd | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) + 1 ) ∈ ℝ+ ) |
| 48 | 47 | rpred | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 49 | 2 4 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐷 𝑌 ) ∈ ℝ ) |
| 50 | 22 14 16 49 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) ∈ ℝ ) |
| 51 | 48 50 | remulcld | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) ∈ ℝ ) |
| 52 | 38 | rehalfcld | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ ) |
| 53 | 2 8 1 3 4 7 | nlmdsdi | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ‘ 𝐵 ) · ( 𝑋 𝐷 𝑌 ) ) = ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ) |
| 54 | 11 13 14 16 53 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) · ( 𝑋 𝐷 𝑌 ) ) = ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ) |
| 55 | msxms | ⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) | |
| 56 | 22 55 | syl | ⊢ ( 𝜑 → 𝑊 ∈ ∞MetSp ) |
| 57 | 2 4 | xmsge0 | ⊢ ( ( 𝑊 ∈ ∞MetSp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝑋 𝐷 𝑌 ) ) |
| 58 | 56 14 16 57 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 𝐷 𝑌 ) ) |
| 59 | 44 | lep1d | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐵 ) ≤ ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) |
| 60 | 44 48 50 58 59 | lemul1ad | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) · ( 𝑋 𝐷 𝑌 ) ) ≤ ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) ) |
| 61 | 54 60 | eqbrtrrd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ≤ ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) ) |
| 62 | 18 9 | breqtrdi | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ) |
| 63 | 50 52 47 | ltmuldiv2d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ↔ ( 𝑋 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ) ) |
| 64 | 62 63 | mpbird | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 65 | 34 51 52 61 64 | lelttrd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 66 | ngpms | ⊢ ( 𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp ) | |
| 67 | 42 66 | syl | ⊢ ( 𝜑 → 𝐹 ∈ MetSp ) |
| 68 | 3 5 | mscl | ⊢ ( ( 𝐹 ∈ MetSp ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ) → ( 𝐵 𝐸 𝐶 ) ∈ ℝ ) |
| 69 | 67 13 15 68 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) ∈ ℝ ) |
| 70 | 2 6 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ ℝ ) |
| 71 | 20 14 70 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ℝ ) |
| 72 | 12 | rphalfcld | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
| 73 | 72 47 | rpdivcld | ⊢ ( 𝜑 → ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ∈ ℝ+ ) |
| 74 | 9 73 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 75 | 74 | rpred | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 76 | 71 75 | readdcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ∈ ℝ ) |
| 77 | 69 76 | remulcld | ⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ∈ ℝ ) |
| 78 | 2 8 1 3 4 6 5 | nlmdsdir | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐵 𝐸 𝐶 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) |
| 79 | 11 13 15 16 78 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) |
| 80 | 2 6 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
| 81 | 20 16 80 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
| 82 | msxms | ⊢ ( 𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp ) | |
| 83 | 67 82 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ∞MetSp ) |
| 84 | 3 5 | xmsge0 | ⊢ ( ( 𝐹 ∈ ∞MetSp ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ) → 0 ≤ ( 𝐵 𝐸 𝐶 ) ) |
| 85 | 83 13 15 84 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐵 𝐸 𝐶 ) ) |
| 86 | 81 71 | resubcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ∈ ℝ ) |
| 87 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 88 | 2 6 87 | nm2dif | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 89 | 20 16 14 88 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 90 | 6 2 87 4 | ngpdsr | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 91 | 20 14 16 90 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 92 | 89 91 | breqtrrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ ( 𝑋 𝐷 𝑌 ) ) |
| 93 | 50 75 18 | ltled | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) ≤ 𝑇 ) |
| 94 | 86 50 75 92 93 | letrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ 𝑇 ) |
| 95 | 81 71 75 | lesubadd2d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ 𝑇 ↔ ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 96 | 94 95 | mpbid | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 97 | 81 76 69 85 96 | lemul2ad | ⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( 𝑁 ‘ 𝑌 ) ) ≤ ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 98 | 79 97 | eqbrtrrd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ≤ ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 99 | 17 10 | breqtrdi | ⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 100 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 101 | 2 6 | nmge0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝑋 ) ) |
| 102 | 20 14 101 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝑋 ) ) |
| 103 | 71 74 | ltaddrpd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 104 | 100 71 76 102 103 | lelttrd | ⊢ ( 𝜑 → 0 < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 105 | ltmuldiv | ⊢ ( ( ( 𝐵 𝐸 𝐶 ) ∈ ℝ ∧ ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ∈ ℝ ∧ 0 < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) → ( ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐵 𝐸 𝐶 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) ) | |
| 106 | 69 52 76 104 105 | syl112anc | ⊢ ( 𝜑 → ( ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐵 𝐸 𝐶 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) ) |
| 107 | 99 106 | mpbird | ⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ) |
| 108 | 36 77 52 98 107 | lelttrd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 109 | 34 36 38 65 108 | lt2halvesd | ⊢ ( 𝜑 → ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) < 𝑅 ) |
| 110 | 30 37 38 40 109 | lelttrd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) < 𝑅 ) |