This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rehalfcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| lt2halvesd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lt2halvesd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lt2halvesd.4 | ⊢ ( 𝜑 → 𝐴 < ( 𝐶 / 2 ) ) | ||
| lt2halvesd.5 | ⊢ ( 𝜑 → 𝐵 < ( 𝐶 / 2 ) ) | ||
| Assertion | lt2halvesd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | lt2halvesd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lt2halvesd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lt2halvesd.4 | ⊢ ( 𝜑 → 𝐴 < ( 𝐶 / 2 ) ) | |
| 5 | lt2halvesd.5 | ⊢ ( 𝜑 → 𝐵 < ( 𝐶 / 2 ) ) | |
| 6 | lt2halves | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) ) | |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 8 | 4 5 7 | mp2and | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < 𝐶 ) |