This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmdsdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nlmdsdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| nlmdsdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| nlmdsdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| nlmdsdi.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| nlmdsdi.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | ||
| Assertion | nlmdsdi | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝐴 ‘ 𝑋 ) · ( 𝑌 𝐷 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) 𝐷 ( 𝑋 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmdsdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nlmdsdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | nlmdsdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | nlmdsdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | nlmdsdi.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 6 | nlmdsdi.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ NrmMod ) | |
| 8 | simpr1 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑋 ∈ 𝐾 ) | |
| 9 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ NrmGrp ) |
| 11 | ngpgrp | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ Grp ) |
| 13 | simpr2 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) | |
| 14 | simpr3 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑍 ∈ 𝑉 ) | |
| 15 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 16 | 1 15 | grpsubcl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 17 | 12 13 14 16 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 18 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 19 | 1 18 2 3 4 6 | nmvs | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑋 · ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( ( norm ‘ 𝑊 ) ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 20 | 7 8 17 19 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑋 · ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( ( norm ‘ 𝑊 ) ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 21 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 23 | 1 2 3 4 15 22 8 13 14 | lmodsubdi | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑋 · ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋 · 𝑍 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑋 · ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) = ( ( norm ‘ 𝑊 ) ‘ ( ( 𝑋 · 𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋 · 𝑍 ) ) ) ) |
| 25 | 20 24 | eqtr3d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝐴 ‘ 𝑋 ) · ( ( norm ‘ 𝑊 ) ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) = ( ( norm ‘ 𝑊 ) ‘ ( ( 𝑋 · 𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋 · 𝑍 ) ) ) ) |
| 26 | 18 1 15 5 | ngpds | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 𝐷 𝑍 ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) |
| 27 | 10 13 14 26 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑌 𝐷 𝑍 ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝐴 ‘ 𝑋 ) · ( 𝑌 𝐷 𝑍 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( ( norm ‘ 𝑊 ) ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 29 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 · 𝑌 ) ∈ 𝑉 ) |
| 30 | 22 8 13 29 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑉 ) |
| 31 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑋 · 𝑍 ) ∈ 𝑉 ) |
| 32 | 22 8 14 31 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑋 · 𝑍 ) ∈ 𝑉 ) |
| 33 | 18 1 15 5 | ngpds | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝑋 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑋 · 𝑍 ) ∈ 𝑉 ) → ( ( 𝑋 · 𝑌 ) 𝐷 ( 𝑋 · 𝑍 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( ( 𝑋 · 𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋 · 𝑍 ) ) ) ) |
| 34 | 10 30 32 33 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑌 ) 𝐷 ( 𝑋 · 𝑍 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( ( 𝑋 · 𝑌 ) ( -g ‘ 𝑊 ) ( 𝑋 · 𝑍 ) ) ) ) |
| 35 | 25 28 34 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝐴 ‘ 𝑋 ) · ( 𝑌 𝐷 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) 𝐷 ( 𝑋 · 𝑍 ) ) ) |