This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑊 ) ) = ( norm ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 1 2 3 4 5 6 | isnlm | ⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) ) |
| 8 | 7 | simplbi | ⊢ ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ NrmRing ) ) |
| 9 | 8 | simp2d | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |