This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nlmvscn . (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmvscn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| nlmvscn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| nlmvscn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| nlmvscn.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| nlmvscn.e | ⊢ 𝐸 = ( dist ‘ 𝐹 ) | ||
| nlmvscn.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| nlmvscn.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | ||
| nlmvscn.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| nlmvscn.t | ⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) | ||
| nlmvscn.u | ⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) | ||
| nlmvscn.w | ⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) | ||
| nlmvscn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| nlmvscn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| nlmvscn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | nlmvscnlem1 | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ∧ ( 𝑋 𝐷 𝑦 ) < 𝑟 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmvscn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | nlmvscn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | nlmvscn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | nlmvscn.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 5 | nlmvscn.e | ⊢ 𝐸 = ( dist ‘ 𝐹 ) | |
| 6 | nlmvscn.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 7 | nlmvscn.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | |
| 8 | nlmvscn.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 9 | nlmvscn.t | ⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) | |
| 10 | nlmvscn.u | ⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) | |
| 11 | nlmvscn.w | ⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) | |
| 12 | nlmvscn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 13 | nlmvscn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 14 | nlmvscn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 15 | 12 | rphalfcld | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
| 16 | 1 | nlmngp2 | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 17 | 11 16 | syl | ⊢ ( 𝜑 → 𝐹 ∈ NrmGrp ) |
| 18 | 3 7 | nmcl | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐵 ) ∈ ℝ ) |
| 19 | 17 13 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐵 ) ∈ ℝ ) |
| 20 | 3 7 | nmge0 | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐵 ∈ 𝐾 ) → 0 ≤ ( 𝐴 ‘ 𝐵 ) ) |
| 21 | 17 13 20 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 ‘ 𝐵 ) ) |
| 22 | 19 21 | ge0p1rpd | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) + 1 ) ∈ ℝ+ ) |
| 23 | 15 22 | rpdivcld | ⊢ ( 𝜑 → ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ∈ ℝ+ ) |
| 24 | 9 23 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 25 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 26 | 11 25 | syl | ⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
| 27 | 2 6 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ ℝ ) |
| 28 | 26 14 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ℝ ) |
| 29 | 24 | rpred | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 30 | 28 29 | readdcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ∈ ℝ ) |
| 31 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 32 | 2 6 | nmge0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝑋 ) ) |
| 33 | 26 14 32 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝑋 ) ) |
| 34 | 28 24 | ltaddrpd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 35 | 31 28 30 33 34 | lelttrd | ⊢ ( 𝜑 → 0 < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 36 | 30 35 | elrpd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ∈ ℝ+ ) |
| 37 | 15 36 | rpdivcld | ⊢ ( 𝜑 → ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ∈ ℝ+ ) |
| 38 | 10 37 | eqeltrid | ⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
| 39 | 24 38 | ifcld | ⊢ ( 𝜑 → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∈ ℝ+ ) |
| 40 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑊 ∈ NrmMod ) |
| 41 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑅 ∈ ℝ+ ) |
| 42 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝐵 ∈ 𝐾 ) |
| 43 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑋 ∈ 𝑉 ) |
| 44 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑥 ∈ 𝐾 ) | |
| 45 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑦 ∈ 𝑉 ) | |
| 46 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝐹 ∈ NrmGrp ) |
| 47 | ngpms | ⊢ ( 𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝐹 ∈ MetSp ) |
| 49 | 3 5 | mscl | ⊢ ( ( 𝐹 ∈ MetSp ∧ 𝐵 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐵 𝐸 𝑥 ) ∈ ℝ ) |
| 50 | 48 42 44 49 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( 𝐵 𝐸 𝑥 ) ∈ ℝ ) |
| 51 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∈ ℝ+ ) |
| 52 | 51 | rpred | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∈ ℝ ) |
| 53 | 38 | rpred | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑈 ∈ ℝ ) |
| 55 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) | |
| 56 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑇 ∈ ℝ ) |
| 57 | min2 | ⊢ ( ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ≤ 𝑈 ) | |
| 58 | 56 54 57 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ≤ 𝑈 ) |
| 59 | 50 52 54 55 58 | ltletrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( 𝐵 𝐸 𝑥 ) < 𝑈 ) |
| 60 | ngpms | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) | |
| 61 | 26 60 | syl | ⊢ ( 𝜑 → 𝑊 ∈ MetSp ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → 𝑊 ∈ MetSp ) |
| 63 | 2 4 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑋 𝐷 𝑦 ) ∈ ℝ ) |
| 64 | 62 43 45 63 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( 𝑋 𝐷 𝑦 ) ∈ ℝ ) |
| 65 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) | |
| 66 | min1 | ⊢ ( ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ≤ 𝑇 ) | |
| 67 | 56 54 66 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ≤ 𝑇 ) |
| 68 | 64 52 56 65 67 | ltletrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( 𝑋 𝐷 𝑦 ) < 𝑇 ) |
| 69 | 1 2 3 4 5 6 7 8 9 10 40 41 42 43 44 45 59 68 | nlmvscnlem2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ∧ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) |
| 70 | 69 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) |
| 71 | 70 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) |
| 72 | breq2 | ⊢ ( 𝑟 = if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) → ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ↔ ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) | |
| 73 | breq2 | ⊢ ( 𝑟 = if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) → ( ( 𝑋 𝐷 𝑦 ) < 𝑟 ↔ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) | |
| 74 | 72 73 | anbi12d | ⊢ ( 𝑟 = if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) → ( ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ∧ ( 𝑋 𝐷 𝑦 ) < 𝑟 ) ↔ ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) ) ) |
| 75 | 74 | imbi1d | ⊢ ( 𝑟 = if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) → ( ( ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ∧ ( 𝑋 𝐷 𝑦 ) < 𝑟 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ↔ ( ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) ) |
| 76 | 75 | 2ralbidv | ⊢ ( 𝑟 = if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) → ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ∧ ( 𝑋 𝐷 𝑦 ) < 𝑟 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) ) |
| 77 | 76 | rspcev | ⊢ ( ( if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ∧ ( 𝑋 𝐷 𝑦 ) < if ( 𝑇 ≤ 𝑈 , 𝑇 , 𝑈 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ∧ ( 𝑋 𝐷 𝑦 ) < 𝑟 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) |
| 78 | 39 71 77 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝐵 𝐸 𝑥 ) < 𝑟 ∧ ( 𝑋 𝐷 𝑦 ) < 𝑟 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝑥 · 𝑦 ) ) < 𝑅 ) ) |