This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg and nlmtlm . (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmvscn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| nlmvscn.sf | ⊢ · = ( ·sf ‘ 𝑊 ) | ||
| nlmvscn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| nlmvscn.kf | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | ||
| Assertion | nlmvscn | ⊢ ( 𝑊 ∈ NrmMod → · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmvscn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | nlmvscn.sf | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| 3 | nlmvscn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 4 | nlmvscn.kf | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | |
| 5 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 8 | 6 1 7 2 | lmodscaf | ⊢ ( 𝑊 ∈ LMod → · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝑊 ∈ NrmMod → · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 10 | eqid | ⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( dist ‘ 𝐹 ) = ( dist ‘ 𝐹 ) | |
| 12 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 13 | eqid | ⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) | |
| 14 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 15 | eqid | ⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) | |
| 16 | eqid | ⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) ) ) | |
| 17 | simpll | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑊 ∈ NrmMod ) | |
| 18 | simpr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 19 | simplrl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) | |
| 20 | simplrr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 21 | 1 6 7 10 11 12 13 14 15 16 17 18 19 20 | nlmvscnlem1 | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) |
| 23 | simplrl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) | |
| 24 | simprl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐹 ) ) | |
| 25 | 23 24 | ovresd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) ) |
| 26 | 25 | breq1d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ) ) |
| 27 | simplrr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 28 | simprr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑤 ∈ ( Base ‘ 𝑊 ) ) | |
| 29 | 27 28 | ovresd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) = ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) ) |
| 30 | 29 | breq1d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ↔ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) |
| 31 | 26 30 | anbi12d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) ↔ ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) ) |
| 32 | 6 1 7 2 14 | scafval | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 34 | 6 1 7 2 14 | scafval | ⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 36 | 33 35 | oveq12d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 37 | 5 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 38 | 6 1 14 7 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 39 | 37 23 27 38 | syl3anc | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 40 | 6 1 14 7 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ) |
| 41 | 37 24 28 40 | syl3anc | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ) |
| 42 | 39 41 | ovresd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 43 | 36 42 | eqtrd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 44 | 43 | breq1d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) |
| 45 | 31 44 | imbi12d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 46 | 45 | 2ralbidva | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 47 | 46 | rexbidv | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 48 | 47 | ralbidv | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 49 | 22 48 | mpbird | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) |
| 50 | 49 | ralrimivva | ⊢ ( 𝑊 ∈ NrmMod → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) |
| 51 | 1 | nlmngp2 | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 52 | ngpms | ⊢ ( 𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp ) | |
| 53 | 51 52 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ MetSp ) |
| 54 | msxms | ⊢ ( 𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp ) | |
| 55 | eqid | ⊢ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) = ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) | |
| 56 | 7 55 | xmsxmet | ⊢ ( 𝐹 ∈ ∞MetSp → ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐹 ) ) ) |
| 57 | 53 54 56 | 3syl | ⊢ ( 𝑊 ∈ NrmMod → ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐹 ) ) ) |
| 58 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 59 | ngpms | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) | |
| 60 | 58 59 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ MetSp ) |
| 61 | msxms | ⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) | |
| 62 | eqid | ⊢ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) | |
| 63 | 6 62 | xmsxmet | ⊢ ( 𝑊 ∈ ∞MetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 64 | 60 61 63 | 3syl | ⊢ ( 𝑊 ∈ NrmMod → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 65 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) | |
| 66 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) | |
| 67 | 65 66 66 | txmetcn | ⊢ ( ( ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐹 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) → ( · ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ↔ ( · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) ) ) |
| 68 | 57 64 64 67 | syl3anc | ⊢ ( 𝑊 ∈ NrmMod → ( · ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ↔ ( · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) ) ) |
| 69 | 9 50 68 | mpbir2and | ⊢ ( 𝑊 ∈ NrmMod → · ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 70 | 4 7 55 | mstopn | ⊢ ( 𝐹 ∈ MetSp → 𝐾 = ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ) |
| 71 | 53 70 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝐾 = ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ) |
| 72 | 3 6 62 | mstopn | ⊢ ( 𝑊 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 73 | 60 72 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 74 | 71 73 | oveq12d | ⊢ ( 𝑊 ∈ NrmMod → ( 𝐾 ×t 𝐽 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 75 | 74 73 | oveq12d | ⊢ ( 𝑊 ∈ NrmMod → ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 76 | 69 75 | eleqtrrd | ⊢ ( 𝑊 ∈ NrmMod → · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |