This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| ngpds.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ngpds.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ngpds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngpdsr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | ngpds.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ngpds.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ngpds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 5 | ngpxms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) | |
| 6 | 2 4 | xmssym | ⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 8 | 1 2 3 4 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
| 9 | 8 | 3com23 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |