This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nlmvscn . Compare this proof with the similar elementary proof mulcn2 for continuity of multiplication on CC . (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmvscn.f | |- F = ( Scalar ` W ) |
|
| nlmvscn.v | |- V = ( Base ` W ) |
||
| nlmvscn.k | |- K = ( Base ` F ) |
||
| nlmvscn.d | |- D = ( dist ` W ) |
||
| nlmvscn.e | |- E = ( dist ` F ) |
||
| nlmvscn.n | |- N = ( norm ` W ) |
||
| nlmvscn.a | |- A = ( norm ` F ) |
||
| nlmvscn.s | |- .x. = ( .s ` W ) |
||
| nlmvscn.t | |- T = ( ( R / 2 ) / ( ( A ` B ) + 1 ) ) |
||
| nlmvscn.u | |- U = ( ( R / 2 ) / ( ( N ` X ) + T ) ) |
||
| nlmvscn.w | |- ( ph -> W e. NrmMod ) |
||
| nlmvscn.r | |- ( ph -> R e. RR+ ) |
||
| nlmvscn.b | |- ( ph -> B e. K ) |
||
| nlmvscn.x | |- ( ph -> X e. V ) |
||
| nlmvscn.c | |- ( ph -> C e. K ) |
||
| nlmvscn.y | |- ( ph -> Y e. V ) |
||
| nlmvscn.1 | |- ( ph -> ( B E C ) < U ) |
||
| nlmvscn.2 | |- ( ph -> ( X D Y ) < T ) |
||
| Assertion | nlmvscnlem2 | |- ( ph -> ( ( B .x. X ) D ( C .x. Y ) ) < R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmvscn.f | |- F = ( Scalar ` W ) |
|
| 2 | nlmvscn.v | |- V = ( Base ` W ) |
|
| 3 | nlmvscn.k | |- K = ( Base ` F ) |
|
| 4 | nlmvscn.d | |- D = ( dist ` W ) |
|
| 5 | nlmvscn.e | |- E = ( dist ` F ) |
|
| 6 | nlmvscn.n | |- N = ( norm ` W ) |
|
| 7 | nlmvscn.a | |- A = ( norm ` F ) |
|
| 8 | nlmvscn.s | |- .x. = ( .s ` W ) |
|
| 9 | nlmvscn.t | |- T = ( ( R / 2 ) / ( ( A ` B ) + 1 ) ) |
|
| 10 | nlmvscn.u | |- U = ( ( R / 2 ) / ( ( N ` X ) + T ) ) |
|
| 11 | nlmvscn.w | |- ( ph -> W e. NrmMod ) |
|
| 12 | nlmvscn.r | |- ( ph -> R e. RR+ ) |
|
| 13 | nlmvscn.b | |- ( ph -> B e. K ) |
|
| 14 | nlmvscn.x | |- ( ph -> X e. V ) |
|
| 15 | nlmvscn.c | |- ( ph -> C e. K ) |
|
| 16 | nlmvscn.y | |- ( ph -> Y e. V ) |
|
| 17 | nlmvscn.1 | |- ( ph -> ( B E C ) < U ) |
|
| 18 | nlmvscn.2 | |- ( ph -> ( X D Y ) < T ) |
|
| 19 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 20 | 11 19 | syl | |- ( ph -> W e. NrmGrp ) |
| 21 | ngpms | |- ( W e. NrmGrp -> W e. MetSp ) |
|
| 22 | 20 21 | syl | |- ( ph -> W e. MetSp ) |
| 23 | nlmlmod | |- ( W e. NrmMod -> W e. LMod ) |
|
| 24 | 11 23 | syl | |- ( ph -> W e. LMod ) |
| 25 | 2 1 8 3 | lmodvscl | |- ( ( W e. LMod /\ B e. K /\ X e. V ) -> ( B .x. X ) e. V ) |
| 26 | 24 13 14 25 | syl3anc | |- ( ph -> ( B .x. X ) e. V ) |
| 27 | 2 1 8 3 | lmodvscl | |- ( ( W e. LMod /\ C e. K /\ Y e. V ) -> ( C .x. Y ) e. V ) |
| 28 | 24 15 16 27 | syl3anc | |- ( ph -> ( C .x. Y ) e. V ) |
| 29 | 2 4 | mscl | |- ( ( W e. MetSp /\ ( B .x. X ) e. V /\ ( C .x. Y ) e. V ) -> ( ( B .x. X ) D ( C .x. Y ) ) e. RR ) |
| 30 | 22 26 28 29 | syl3anc | |- ( ph -> ( ( B .x. X ) D ( C .x. Y ) ) e. RR ) |
| 31 | 2 1 8 3 | lmodvscl | |- ( ( W e. LMod /\ B e. K /\ Y e. V ) -> ( B .x. Y ) e. V ) |
| 32 | 24 13 16 31 | syl3anc | |- ( ph -> ( B .x. Y ) e. V ) |
| 33 | 2 4 | mscl | |- ( ( W e. MetSp /\ ( B .x. X ) e. V /\ ( B .x. Y ) e. V ) -> ( ( B .x. X ) D ( B .x. Y ) ) e. RR ) |
| 34 | 22 26 32 33 | syl3anc | |- ( ph -> ( ( B .x. X ) D ( B .x. Y ) ) e. RR ) |
| 35 | 2 4 | mscl | |- ( ( W e. MetSp /\ ( B .x. Y ) e. V /\ ( C .x. Y ) e. V ) -> ( ( B .x. Y ) D ( C .x. Y ) ) e. RR ) |
| 36 | 22 32 28 35 | syl3anc | |- ( ph -> ( ( B .x. Y ) D ( C .x. Y ) ) e. RR ) |
| 37 | 34 36 | readdcld | |- ( ph -> ( ( ( B .x. X ) D ( B .x. Y ) ) + ( ( B .x. Y ) D ( C .x. Y ) ) ) e. RR ) |
| 38 | 12 | rpred | |- ( ph -> R e. RR ) |
| 39 | 2 4 | mstri | |- ( ( W e. MetSp /\ ( ( B .x. X ) e. V /\ ( C .x. Y ) e. V /\ ( B .x. Y ) e. V ) ) -> ( ( B .x. X ) D ( C .x. Y ) ) <_ ( ( ( B .x. X ) D ( B .x. Y ) ) + ( ( B .x. Y ) D ( C .x. Y ) ) ) ) |
| 40 | 22 26 28 32 39 | syl13anc | |- ( ph -> ( ( B .x. X ) D ( C .x. Y ) ) <_ ( ( ( B .x. X ) D ( B .x. Y ) ) + ( ( B .x. Y ) D ( C .x. Y ) ) ) ) |
| 41 | 1 | nlmngp2 | |- ( W e. NrmMod -> F e. NrmGrp ) |
| 42 | 11 41 | syl | |- ( ph -> F e. NrmGrp ) |
| 43 | 3 7 | nmcl | |- ( ( F e. NrmGrp /\ B e. K ) -> ( A ` B ) e. RR ) |
| 44 | 42 13 43 | syl2anc | |- ( ph -> ( A ` B ) e. RR ) |
| 45 | 3 7 | nmge0 | |- ( ( F e. NrmGrp /\ B e. K ) -> 0 <_ ( A ` B ) ) |
| 46 | 42 13 45 | syl2anc | |- ( ph -> 0 <_ ( A ` B ) ) |
| 47 | 44 46 | ge0p1rpd | |- ( ph -> ( ( A ` B ) + 1 ) e. RR+ ) |
| 48 | 47 | rpred | |- ( ph -> ( ( A ` B ) + 1 ) e. RR ) |
| 49 | 2 4 | mscl | |- ( ( W e. MetSp /\ X e. V /\ Y e. V ) -> ( X D Y ) e. RR ) |
| 50 | 22 14 16 49 | syl3anc | |- ( ph -> ( X D Y ) e. RR ) |
| 51 | 48 50 | remulcld | |- ( ph -> ( ( ( A ` B ) + 1 ) x. ( X D Y ) ) e. RR ) |
| 52 | 38 | rehalfcld | |- ( ph -> ( R / 2 ) e. RR ) |
| 53 | 2 8 1 3 4 7 | nlmdsdi | |- ( ( W e. NrmMod /\ ( B e. K /\ X e. V /\ Y e. V ) ) -> ( ( A ` B ) x. ( X D Y ) ) = ( ( B .x. X ) D ( B .x. Y ) ) ) |
| 54 | 11 13 14 16 53 | syl13anc | |- ( ph -> ( ( A ` B ) x. ( X D Y ) ) = ( ( B .x. X ) D ( B .x. Y ) ) ) |
| 55 | msxms | |- ( W e. MetSp -> W e. *MetSp ) |
|
| 56 | 22 55 | syl | |- ( ph -> W e. *MetSp ) |
| 57 | 2 4 | xmsge0 | |- ( ( W e. *MetSp /\ X e. V /\ Y e. V ) -> 0 <_ ( X D Y ) ) |
| 58 | 56 14 16 57 | syl3anc | |- ( ph -> 0 <_ ( X D Y ) ) |
| 59 | 44 | lep1d | |- ( ph -> ( A ` B ) <_ ( ( A ` B ) + 1 ) ) |
| 60 | 44 48 50 58 59 | lemul1ad | |- ( ph -> ( ( A ` B ) x. ( X D Y ) ) <_ ( ( ( A ` B ) + 1 ) x. ( X D Y ) ) ) |
| 61 | 54 60 | eqbrtrrd | |- ( ph -> ( ( B .x. X ) D ( B .x. Y ) ) <_ ( ( ( A ` B ) + 1 ) x. ( X D Y ) ) ) |
| 62 | 18 9 | breqtrdi | |- ( ph -> ( X D Y ) < ( ( R / 2 ) / ( ( A ` B ) + 1 ) ) ) |
| 63 | 50 52 47 | ltmuldiv2d | |- ( ph -> ( ( ( ( A ` B ) + 1 ) x. ( X D Y ) ) < ( R / 2 ) <-> ( X D Y ) < ( ( R / 2 ) / ( ( A ` B ) + 1 ) ) ) ) |
| 64 | 62 63 | mpbird | |- ( ph -> ( ( ( A ` B ) + 1 ) x. ( X D Y ) ) < ( R / 2 ) ) |
| 65 | 34 51 52 61 64 | lelttrd | |- ( ph -> ( ( B .x. X ) D ( B .x. Y ) ) < ( R / 2 ) ) |
| 66 | ngpms | |- ( F e. NrmGrp -> F e. MetSp ) |
|
| 67 | 42 66 | syl | |- ( ph -> F e. MetSp ) |
| 68 | 3 5 | mscl | |- ( ( F e. MetSp /\ B e. K /\ C e. K ) -> ( B E C ) e. RR ) |
| 69 | 67 13 15 68 | syl3anc | |- ( ph -> ( B E C ) e. RR ) |
| 70 | 2 6 | nmcl | |- ( ( W e. NrmGrp /\ X e. V ) -> ( N ` X ) e. RR ) |
| 71 | 20 14 70 | syl2anc | |- ( ph -> ( N ` X ) e. RR ) |
| 72 | 12 | rphalfcld | |- ( ph -> ( R / 2 ) e. RR+ ) |
| 73 | 72 47 | rpdivcld | |- ( ph -> ( ( R / 2 ) / ( ( A ` B ) + 1 ) ) e. RR+ ) |
| 74 | 9 73 | eqeltrid | |- ( ph -> T e. RR+ ) |
| 75 | 74 | rpred | |- ( ph -> T e. RR ) |
| 76 | 71 75 | readdcld | |- ( ph -> ( ( N ` X ) + T ) e. RR ) |
| 77 | 69 76 | remulcld | |- ( ph -> ( ( B E C ) x. ( ( N ` X ) + T ) ) e. RR ) |
| 78 | 2 8 1 3 4 6 5 | nlmdsdir | |- ( ( W e. NrmMod /\ ( B e. K /\ C e. K /\ Y e. V ) ) -> ( ( B E C ) x. ( N ` Y ) ) = ( ( B .x. Y ) D ( C .x. Y ) ) ) |
| 79 | 11 13 15 16 78 | syl13anc | |- ( ph -> ( ( B E C ) x. ( N ` Y ) ) = ( ( B .x. Y ) D ( C .x. Y ) ) ) |
| 80 | 2 6 | nmcl | |- ( ( W e. NrmGrp /\ Y e. V ) -> ( N ` Y ) e. RR ) |
| 81 | 20 16 80 | syl2anc | |- ( ph -> ( N ` Y ) e. RR ) |
| 82 | msxms | |- ( F e. MetSp -> F e. *MetSp ) |
|
| 83 | 67 82 | syl | |- ( ph -> F e. *MetSp ) |
| 84 | 3 5 | xmsge0 | |- ( ( F e. *MetSp /\ B e. K /\ C e. K ) -> 0 <_ ( B E C ) ) |
| 85 | 83 13 15 84 | syl3anc | |- ( ph -> 0 <_ ( B E C ) ) |
| 86 | 81 71 | resubcld | |- ( ph -> ( ( N ` Y ) - ( N ` X ) ) e. RR ) |
| 87 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 88 | 2 6 87 | nm2dif | |- ( ( W e. NrmGrp /\ Y e. V /\ X e. V ) -> ( ( N ` Y ) - ( N ` X ) ) <_ ( N ` ( Y ( -g ` W ) X ) ) ) |
| 89 | 20 16 14 88 | syl3anc | |- ( ph -> ( ( N ` Y ) - ( N ` X ) ) <_ ( N ` ( Y ( -g ` W ) X ) ) ) |
| 90 | 6 2 87 4 | ngpdsr | |- ( ( W e. NrmGrp /\ X e. V /\ Y e. V ) -> ( X D Y ) = ( N ` ( Y ( -g ` W ) X ) ) ) |
| 91 | 20 14 16 90 | syl3anc | |- ( ph -> ( X D Y ) = ( N ` ( Y ( -g ` W ) X ) ) ) |
| 92 | 89 91 | breqtrrd | |- ( ph -> ( ( N ` Y ) - ( N ` X ) ) <_ ( X D Y ) ) |
| 93 | 50 75 18 | ltled | |- ( ph -> ( X D Y ) <_ T ) |
| 94 | 86 50 75 92 93 | letrd | |- ( ph -> ( ( N ` Y ) - ( N ` X ) ) <_ T ) |
| 95 | 81 71 75 | lesubadd2d | |- ( ph -> ( ( ( N ` Y ) - ( N ` X ) ) <_ T <-> ( N ` Y ) <_ ( ( N ` X ) + T ) ) ) |
| 96 | 94 95 | mpbid | |- ( ph -> ( N ` Y ) <_ ( ( N ` X ) + T ) ) |
| 97 | 81 76 69 85 96 | lemul2ad | |- ( ph -> ( ( B E C ) x. ( N ` Y ) ) <_ ( ( B E C ) x. ( ( N ` X ) + T ) ) ) |
| 98 | 79 97 | eqbrtrrd | |- ( ph -> ( ( B .x. Y ) D ( C .x. Y ) ) <_ ( ( B E C ) x. ( ( N ` X ) + T ) ) ) |
| 99 | 17 10 | breqtrdi | |- ( ph -> ( B E C ) < ( ( R / 2 ) / ( ( N ` X ) + T ) ) ) |
| 100 | 0red | |- ( ph -> 0 e. RR ) |
|
| 101 | 2 6 | nmge0 | |- ( ( W e. NrmGrp /\ X e. V ) -> 0 <_ ( N ` X ) ) |
| 102 | 20 14 101 | syl2anc | |- ( ph -> 0 <_ ( N ` X ) ) |
| 103 | 71 74 | ltaddrpd | |- ( ph -> ( N ` X ) < ( ( N ` X ) + T ) ) |
| 104 | 100 71 76 102 103 | lelttrd | |- ( ph -> 0 < ( ( N ` X ) + T ) ) |
| 105 | ltmuldiv | |- ( ( ( B E C ) e. RR /\ ( R / 2 ) e. RR /\ ( ( ( N ` X ) + T ) e. RR /\ 0 < ( ( N ` X ) + T ) ) ) -> ( ( ( B E C ) x. ( ( N ` X ) + T ) ) < ( R / 2 ) <-> ( B E C ) < ( ( R / 2 ) / ( ( N ` X ) + T ) ) ) ) |
|
| 106 | 69 52 76 104 105 | syl112anc | |- ( ph -> ( ( ( B E C ) x. ( ( N ` X ) + T ) ) < ( R / 2 ) <-> ( B E C ) < ( ( R / 2 ) / ( ( N ` X ) + T ) ) ) ) |
| 107 | 99 106 | mpbird | |- ( ph -> ( ( B E C ) x. ( ( N ` X ) + T ) ) < ( R / 2 ) ) |
| 108 | 36 77 52 98 107 | lelttrd | |- ( ph -> ( ( B .x. Y ) D ( C .x. Y ) ) < ( R / 2 ) ) |
| 109 | 34 36 38 65 108 | lt2halvesd | |- ( ph -> ( ( ( B .x. X ) D ( B .x. Y ) ) + ( ( B .x. Y ) D ( C .x. Y ) ) ) < R ) |
| 110 | 30 37 38 40 109 | lelttrd | |- ( ph -> ( ( B .x. X ) D ( C .x. Y ) ) < R ) |