This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmmtri.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | nm2dif | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmmtri.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | 1 2 | nmcl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 1 2 | nmcl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
| 8 | 5 7 | resubcld | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ∈ ℂ ) |
| 10 | 9 | abscld | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 11 | simp1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ NrmGrp ) | |
| 12 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 13 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
| 14 | 12 13 | syl3an1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
| 15 | 1 2 | nmcl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 − 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 16 | 11 14 15 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 17 | 8 | leabsd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( abs ‘ ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 18 | 1 2 3 | nmrtri | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| 19 | 8 10 16 17 18 | letrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |