This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | ||
| Assertion | xmsge0 | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | |
| 3 | 1 2 | xmsxmet2 | ⊢ ( 𝑀 ∈ ∞MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 | xmetge0 | ⊢ ( ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) | |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) |
| 6 | ovres | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 8 | 5 7 | breqtrd | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |