This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmdsdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nlmdsdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| nlmdsdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| nlmdsdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| nlmdsdi.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| nlmdsdir.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| nlmdsdir.e | ⊢ 𝐸 = ( dist ‘ 𝐹 ) | ||
| Assertion | nlmdsdir | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 𝐸 𝑌 ) · ( 𝑁 ‘ 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) 𝐷 ( 𝑌 · 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmdsdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nlmdsdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | nlmdsdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | nlmdsdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | nlmdsdi.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 6 | nlmdsdir.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 7 | nlmdsdir.e | ⊢ 𝐸 = ( dist ‘ 𝐹 ) | |
| 8 | simpl | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ NrmMod ) | |
| 9 | 3 | nlmngp2 | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝐹 ∈ NrmGrp ) |
| 11 | ngpgrp | ⊢ ( 𝐹 ∈ NrmGrp → 𝐹 ∈ Grp ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝐹 ∈ Grp ) |
| 13 | simpr1 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑋 ∈ 𝐾 ) | |
| 14 | simpr2 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑌 ∈ 𝐾 ) | |
| 15 | eqid | ⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) | |
| 16 | 4 15 | grpsubcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ∈ 𝐾 ) |
| 17 | 12 13 14 16 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ∈ 𝐾 ) |
| 18 | simpr3 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑍 ∈ 𝑉 ) | |
| 19 | eqid | ⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) | |
| 20 | 1 6 2 3 4 19 | nmvs | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) · 𝑍 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ) · ( 𝑁 ‘ 𝑍 ) ) ) |
| 21 | 8 17 18 20 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑁 ‘ ( ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) · 𝑍 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ) · ( 𝑁 ‘ 𝑍 ) ) ) |
| 22 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 23 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 25 | 1 2 3 4 22 15 24 13 14 18 | lmodsubdir | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( -g ‘ 𝑊 ) ( 𝑌 · 𝑍 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑁 ‘ ( ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) · 𝑍 ) ) = ( 𝑁 ‘ ( ( 𝑋 · 𝑍 ) ( -g ‘ 𝑊 ) ( 𝑌 · 𝑍 ) ) ) ) |
| 27 | 21 26 | eqtr3d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( ( norm ‘ 𝐹 ) ‘ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ) · ( 𝑁 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( ( 𝑋 · 𝑍 ) ( -g ‘ 𝑊 ) ( 𝑌 · 𝑍 ) ) ) ) |
| 28 | 19 4 15 7 | ngpds | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 𝐸 𝑌 ) = ( ( norm ‘ 𝐹 ) ‘ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ) ) |
| 29 | 10 13 14 28 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑋 𝐸 𝑌 ) = ( ( norm ‘ 𝐹 ) ‘ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 𝐸 𝑌 ) · ( 𝑁 ‘ 𝑍 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ ( 𝑋 ( -g ‘ 𝐹 ) 𝑌 ) ) · ( 𝑁 ‘ 𝑍 ) ) ) |
| 31 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 32 | 31 | adantr | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → 𝑊 ∈ NrmGrp ) |
| 33 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑋 · 𝑍 ) ∈ 𝑉 ) |
| 34 | 24 13 18 33 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑋 · 𝑍 ) ∈ 𝑉 ) |
| 35 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 · 𝑍 ) ∈ 𝑉 ) |
| 36 | 24 14 18 35 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝑌 · 𝑍 ) ∈ 𝑉 ) |
| 37 | 6 1 22 5 | ngpds | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝑋 · 𝑍 ) ∈ 𝑉 ∧ ( 𝑌 · 𝑍 ) ∈ 𝑉 ) → ( ( 𝑋 · 𝑍 ) 𝐷 ( 𝑌 · 𝑍 ) ) = ( 𝑁 ‘ ( ( 𝑋 · 𝑍 ) ( -g ‘ 𝑊 ) ( 𝑌 · 𝑍 ) ) ) ) |
| 38 | 32 34 36 37 | syl3anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑍 ) 𝐷 ( 𝑌 · 𝑍 ) ) = ( 𝑁 ‘ ( ( 𝑋 · 𝑍 ) ( -g ‘ 𝑊 ) ( 𝑌 · 𝑍 ) ) ) ) |
| 39 | 27 30 38 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 𝐸 𝑌 ) · ( 𝑁 ‘ 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) 𝐷 ( 𝑌 · 𝑍 ) ) ) |