This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class N is a neighborhood of S ". (Contributed by FL, 25-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | neival | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑁 ∈ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
| 4 | sseq2 | ⊢ ( 𝑣 = 𝑁 → ( 𝑔 ⊆ 𝑣 ↔ 𝑔 ⊆ 𝑁 ) ) | |
| 5 | 4 | anbi2d | ⊢ ( 𝑣 = 𝑁 → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑣 = 𝑁 → ( ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 7 | 6 | elrab | ⊢ ( 𝑁 ∈ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ↔ ( 𝑁 ∈ 𝒫 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 8 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 9 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 ⊆ 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 ⊆ 𝑋 ) ) |
| 11 | 10 | anbi1d | ⊢ ( 𝐽 ∈ Top → ( ( 𝑁 ∈ 𝒫 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 12 | 7 11 | bitrid | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 14 | 3 13 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |