This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | ||
| Assertion | restcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 3 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ Top ) | |
| 4 | sstr | ⊢ ( ( 𝑆 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
| 7 | 1 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 | eqid | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) | |
| 10 | ineq1 | ⊢ ( 𝑥 = ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ( 𝑥 ∩ 𝑌 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) | |
| 11 | 10 | rspceeqv | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( 𝑥 ∩ 𝑌 ) ) |
| 12 | 8 9 11 | sylancl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( 𝑥 ∩ 𝑌 ) ) |
| 13 | 2 | fveq2i | ⊢ ( Clsd ‘ 𝐾 ) = ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) |
| 14 | 13 | eleq2i | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ 𝐾 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 15 | 1 | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( 𝑥 ∩ 𝑌 ) ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( 𝑥 ∩ 𝑌 ) ) ) |
| 17 | 14 16 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ 𝐾 ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) = ( 𝑥 ∩ 𝑌 ) ) ) |
| 18 | 12 17 | mpbird | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 19 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 20 | 3 6 19 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 21 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑌 ) | |
| 22 | 20 21 | ssind | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |
| 23 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 24 | 23 | clsss2 | ⊢ ( ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∈ ( Clsd ‘ 𝐾 ) ∧ 𝑆 ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |
| 25 | 18 22 24 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |
| 26 | 2 | fveq2i | ⊢ ( cls ‘ 𝐾 ) = ( cls ‘ ( 𝐽 ↾t 𝑌 ) ) |
| 27 | 26 | fveq1i | ⊢ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( ( cls ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) |
| 28 | id | ⊢ ( 𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋 ) | |
| 29 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 30 | ssexg | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑌 ∈ V ) | |
| 31 | 28 29 30 | syl2anr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 32 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) | |
| 33 | 31 32 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
| 34 | 33 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
| 35 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 36 | 35 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 37 | 21 36 | sseqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 38 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ ( 𝐽 ↾t 𝑌 ) | |
| 39 | 38 | clscld | ⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) → ( ( cls ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 40 | 34 37 39 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 41 | 27 40 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 42 | 1 | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) |
| 43 | 42 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) |
| 44 | 41 43 | mpbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) |
| 45 | 2 33 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐾 ∈ Top ) |
| 47 | 2 | unieqi | ⊢ ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑌 ) |
| 48 | 47 | eqcomi | ⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ 𝐾 |
| 49 | 48 | sscls | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) → 𝑆 ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 50 | 46 37 49 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) → 𝑆 ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 52 | inss1 | ⊢ ( 𝑥 ∩ 𝑌 ) ⊆ 𝑥 | |
| 53 | sseq1 | ⊢ ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) → ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑥 ↔ ( 𝑥 ∩ 𝑌 ) ⊆ 𝑥 ) ) | |
| 54 | 52 53 | mpbiri | ⊢ ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑥 ) |
| 55 | 54 | ad2antll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑥 ) |
| 56 | 51 55 | sstrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) → 𝑆 ⊆ 𝑥 ) |
| 57 | 1 | clsss2 | ⊢ ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑥 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑥 ) |
| 58 | 57 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑥 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑥 ) |
| 59 | 58 | ssrind | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑥 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( 𝑥 ∩ 𝑌 ) ) |
| 60 | sseq2 | ⊢ ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( 𝑥 ∩ 𝑌 ) ) ) | |
| 61 | 59 60 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑥 ) ) → ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 62 | 61 | expr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑆 ⊆ 𝑥 → ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) |
| 63 | 62 | com23 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) → ( 𝑆 ⊆ 𝑥 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) |
| 64 | 63 | impr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) → ( 𝑆 ⊆ 𝑥 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 65 | 56 64 | mpd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑥 ∩ 𝑌 ) ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 66 | 44 65 | rexlimddv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 67 | 25 66 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |