This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modsumfzodifsn | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) ) | |
| 2 | elfzoelz | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝐾 ∈ ℝ ) |
| 4 | nn0re | ⊢ ( 𝐽 ∈ ℕ0 → 𝐽 ∈ ℝ ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → 𝐽 ∈ ℝ ) |
| 6 | readdcl | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) | |
| 7 | 3 5 6 | syl2anr | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) |
| 8 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → 𝑁 ∈ ℝ+ ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ+ ) |
| 11 | 7 10 | jca | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
| 12 | 1 11 | sylanb | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
| 14 | elfzo1 | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) | |
| 15 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → 𝐾 ∈ ℕ0 ) |
| 17 | 14 16 | sylbi | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 ) |
| 18 | elfzonn0 | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℕ0 ) | |
| 19 | nn0addcl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐽 ∈ ℕ0 ) → ( 𝐾 + 𝐽 ) ∈ ℕ0 ) | |
| 20 | 17 18 19 | syl2anr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℕ0 ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 + 𝐽 ) ∈ ℕ0 ) |
| 22 | 21 | nn0ge0d | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 0 ≤ ( 𝐾 + 𝐽 ) ) |
| 23 | simpl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 + 𝐽 ) < 𝑁 ) | |
| 24 | modid | ⊢ ( ( ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐾 + 𝐽 ) ∧ ( 𝐾 + 𝐽 ) < 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) = ( 𝐾 + 𝐽 ) ) | |
| 25 | 13 22 23 24 | syl12anc | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) = ( 𝐾 + 𝐽 ) ) |
| 26 | simp2 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → 𝑁 ∈ ℕ ) | |
| 27 | 1 26 | sylbi | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 30 | elfzo0 | ⊢ ( ( 𝐾 + 𝐽 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝐾 + 𝐽 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( 𝐾 + 𝐽 ) < 𝑁 ) ) | |
| 31 | 21 29 23 30 | syl3anbrc | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 + 𝐽 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 32 | 2 | zcnd | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝐾 ∈ ℂ ) |
| 33 | 32 | adantl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝐾 ∈ ℂ ) |
| 34 | 0cnd | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 0 ∈ ℂ ) | |
| 35 | elfzoelz | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) | |
| 36 | 35 | zcnd | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℂ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝐽 ∈ ℂ ) |
| 38 | nnne0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ≠ 0 ) | |
| 39 | 38 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → 𝐾 ≠ 0 ) |
| 40 | 14 39 | sylbi | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝐾 ≠ 0 ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝐾 ≠ 0 ) |
| 42 | 33 34 37 41 | addneintr2d | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ≠ ( 0 + 𝐽 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 + 𝐽 ) ≠ ( 0 + 𝐽 ) ) |
| 44 | 37 | adantl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝐽 ∈ ℂ ) |
| 45 | addlid | ⊢ ( 𝐽 ∈ ℂ → ( 0 + 𝐽 ) = 𝐽 ) | |
| 46 | 45 | eqcomd | ⊢ ( 𝐽 ∈ ℂ → 𝐽 = ( 0 + 𝐽 ) ) |
| 47 | 44 46 | syl | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝐽 = ( 0 + 𝐽 ) ) |
| 48 | 43 47 | neeqtrrd | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 + 𝐽 ) ≠ 𝐽 ) |
| 49 | eldifsn | ⊢ ( ( 𝐾 + 𝐽 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ↔ ( ( 𝐾 + 𝐽 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝐾 + 𝐽 ) ≠ 𝐽 ) ) | |
| 50 | 31 48 49 | sylanbrc | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 + 𝐽 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| 51 | 25 50 | eqeltrd | ⊢ ( ( ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| 52 | elfzoel2 | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 53 | 52 | zcnd | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℂ ) |
| 54 | 53 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 55 | 54 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℂ ) |
| 56 | 55 | mulm1d | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( - 1 · 𝑁 ) = - 𝑁 ) |
| 57 | 56 | oveq2d | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) = ( ( 𝐾 + 𝐽 ) + - 𝑁 ) ) |
| 58 | zaddcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐾 + 𝐽 ) ∈ ℤ ) | |
| 59 | 2 35 58 | syl2anr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℤ ) |
| 60 | 59 | zcnd | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℂ ) |
| 61 | 60 54 | jca | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 62 | 61 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 63 | negsub | ⊢ ( ( ( 𝐾 + 𝐽 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝐾 + 𝐽 ) + - 𝑁 ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) + - 𝑁 ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) |
| 65 | 57 64 | eqtrd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) |
| 66 | 65 | oveq1d | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) mod 𝑁 ) = ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) mod 𝑁 ) ) |
| 67 | 2 35 58 | syl2an | ⊢ ( ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℤ ) |
| 68 | 67 | zred | ⊢ ( ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) |
| 69 | 68 | ancoms | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) |
| 70 | 52 | zred | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 71 | 70 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 72 | 69 71 | resubcld | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℝ ) |
| 73 | 72 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℝ ) |
| 74 | 26 | nnrpd | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → 𝑁 ∈ ℝ+ ) |
| 75 | 1 74 | sylbi | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℝ+ ) |
| 76 | 75 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ+ ) |
| 77 | 76 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℝ+ ) |
| 78 | nnre | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) | |
| 79 | 78 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → 𝐾 ∈ ℝ ) |
| 80 | 79 | adantl | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → 𝐾 ∈ ℝ ) |
| 81 | 4 | adantr | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → 𝐽 ∈ ℝ ) |
| 82 | 81 | adantr | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → 𝐽 ∈ ℝ ) |
| 83 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 84 | 83 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 85 | 84 | adantl | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 86 | simp3 | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ∈ ℝ ) | |
| 87 | 6 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) |
| 88 | 86 87 | lenltd | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑁 ≤ ( 𝐾 + 𝐽 ) ↔ ¬ ( 𝐾 + 𝐽 ) < 𝑁 ) ) |
| 89 | 88 | biimprd | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → 𝑁 ≤ ( 𝐾 + 𝐽 ) ) ) |
| 90 | 87 86 | subge0d | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ↔ 𝑁 ≤ ( 𝐾 + 𝐽 ) ) ) |
| 91 | 89 90 | sylibrd | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) ) |
| 92 | 80 82 85 91 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) ) |
| 93 | 81 79 | anim12ci | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ) |
| 94 | 83 83 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 95 | 94 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 96 | 95 | adantl | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 97 | simpr | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → 𝐽 < 𝑁 ) | |
| 98 | simp3 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → 𝐾 < 𝑁 ) | |
| 99 | 97 98 | anim12ci | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) |
| 100 | 93 96 99 | jca31 | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) |
| 101 | lt2add | ⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) → ( ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) → ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) ) | |
| 102 | 101 | imp | ⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) → ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) |
| 103 | 100 102 | syl | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) |
| 104 | 79 81 6 | syl2anr | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) |
| 105 | ltsubadd | ⊢ ( ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ↔ ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) ) | |
| 106 | 104 85 85 105 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ↔ ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) ) |
| 107 | 103 106 | mpbird | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) |
| 108 | 92 107 | jctird | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) |
| 109 | 108 | ex | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) ) |
| 110 | 14 109 | biimtrid | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) ) |
| 111 | 110 | 3adant2 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) ) |
| 112 | 1 111 | sylbi | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) ) |
| 113 | 112 | imp | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) |
| 114 | 113 | impcom | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) |
| 115 | 73 77 114 | jca31 | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) ) |
| 116 | modid | ⊢ ( ( ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) → ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) mod 𝑁 ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) | |
| 117 | 115 116 | syl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) mod 𝑁 ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) |
| 118 | 66 117 | eqtrd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) mod 𝑁 ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) |
| 119 | 118 | eqcomd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) = ( ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) mod 𝑁 ) ) |
| 120 | 1 9 | sylbi | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℝ+ ) |
| 121 | 120 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ+ ) |
| 122 | neg1z | ⊢ - 1 ∈ ℤ | |
| 123 | 122 | a1i | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → - 1 ∈ ℤ ) |
| 124 | modcyc | ⊢ ( ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ - 1 ∈ ℤ ) → ( ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) mod 𝑁 ) = ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ) | |
| 125 | 69 121 123 124 | syl2an23an | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( ( 𝐾 + 𝐽 ) + ( - 1 · 𝑁 ) ) mod 𝑁 ) = ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ) |
| 126 | 119 125 | eqtrd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) = ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ) |
| 127 | 126 | eqcomd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) = ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) |
| 128 | 52 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 129 | 59 128 | zsubcld | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℤ ) |
| 130 | 129 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℤ ) |
| 131 | 3 | adantl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝐾 ∈ ℝ ) |
| 132 | 35 | zred | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℝ ) |
| 133 | 132 | adantr | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝐽 ∈ ℝ ) |
| 134 | 90 | biimprd | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑁 ≤ ( 𝐾 + 𝐽 ) → 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) ) |
| 135 | 88 134 | sylbird | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) ) |
| 136 | 131 133 71 135 | syl3anc | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 → 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) ) |
| 137 | 136 | impcom | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) |
| 138 | elnn0z | ⊢ ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℕ0 ↔ ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ) ) | |
| 139 | 130 137 138 | sylanbrc | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℕ0 ) |
| 140 | 28 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 141 | 100 | expcom | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) ) |
| 142 | 14 141 | sylbi | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) ) |
| 143 | 142 | com12 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝐽 < 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) ) |
| 144 | 143 | 3adant2 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) ) |
| 145 | 1 144 | sylbi | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) ) |
| 146 | 145 | imp | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( ( 𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ) ∧ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ∧ ( 𝐾 < 𝑁 ∧ 𝐽 < 𝑁 ) ) ) |
| 147 | 146 102 | syl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) |
| 148 | 4 | adantr | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → 𝐽 ∈ ℝ ) |
| 149 | 3 148 6 | syl2anr | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 + 𝐽 ) ∈ ℝ ) |
| 150 | 83 | adantl | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 151 | 150 | adantr | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 152 | 149 151 151 | 3jca | ⊢ ( ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 153 | 152 | ex | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 154 | 153 | 3adant3 | ⊢ ( ( 𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 155 | 1 154 | sylbi | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) ) |
| 156 | 155 | imp | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 157 | 156 105 | syl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ↔ ( 𝐾 + 𝐽 ) < ( 𝑁 + 𝑁 ) ) ) |
| 158 | 147 157 | mpbird | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) |
| 159 | 158 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) |
| 160 | elfzo0 | ⊢ ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) < 𝑁 ) ) | |
| 161 | 139 140 159 160 | syl3anbrc | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 162 | nncn | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) | |
| 163 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 164 | subcl | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐾 − 𝑁 ) ∈ ℂ ) | |
| 165 | 162 163 164 | syl2an | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 − 𝑁 ) ∈ ℂ ) |
| 166 | 165 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → ( 𝐾 − 𝑁 ) ∈ ℂ ) |
| 167 | 14 166 | sylbi | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( 𝐾 − 𝑁 ) ∈ ℂ ) |
| 168 | 167 | adantl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 − 𝑁 ) ∈ ℂ ) |
| 169 | 168 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 − 𝑁 ) ∈ ℂ ) |
| 170 | 0cnd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 0 ∈ ℂ ) | |
| 171 | 37 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝐽 ∈ ℂ ) |
| 172 | elfzoel2 | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 173 | 172 | zcnd | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℂ ) |
| 174 | 79 98 | ltned | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → 𝐾 ≠ 𝑁 ) |
| 175 | 14 174 | sylbi | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → 𝐾 ≠ 𝑁 ) |
| 176 | 32 173 175 | subne0d | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( 𝐾 − 𝑁 ) ≠ 0 ) |
| 177 | 176 | adantl | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 − 𝑁 ) ≠ 0 ) |
| 178 | 177 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 − 𝑁 ) ≠ 0 ) |
| 179 | 169 170 171 178 | addneintr2d | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 − 𝑁 ) + 𝐽 ) ≠ ( 0 + 𝐽 ) ) |
| 180 | 33 37 54 | 3jca | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 181 | 180 | adantl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 182 | addsub | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) = ( ( 𝐾 − 𝑁 ) + 𝐽 ) ) | |
| 183 | 181 182 | syl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) = ( ( 𝐾 − 𝑁 ) + 𝐽 ) ) |
| 184 | 171 45 | syl | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 0 + 𝐽 ) = 𝐽 ) |
| 185 | 184 | eqcomd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → 𝐽 = ( 0 + 𝐽 ) ) |
| 186 | 179 183 185 | 3netr4d | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ≠ 𝐽 ) |
| 187 | eldifsn | ⊢ ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ↔ ( ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐾 + 𝐽 ) − 𝑁 ) ≠ 𝐽 ) ) | |
| 188 | 161 186 187 | sylanbrc | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) − 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| 189 | 127 188 | eqeltrd | ⊢ ( ( ¬ ( 𝐾 + 𝐽 ) < 𝑁 ∧ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |
| 190 | 51 189 | pm2.61ian | ⊢ ( ( 𝐽 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐾 + 𝐽 ) mod 𝑁 ) ∈ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) |