This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modlteq | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 mod 𝑁 ) = ( 𝐽 mod 𝑁 ) ↔ 𝐼 = 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodidfzoimp | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 mod 𝑁 ) = 𝐼 ) | |
| 2 | zmodidfzoimp | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 mod 𝑁 ) = 𝐽 ) | |
| 3 | 1 2 | eqeqan12d | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 mod 𝑁 ) = ( 𝐽 mod 𝑁 ) ↔ 𝐼 = 𝐽 ) ) |