This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| addcomd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| addcand.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| addneintr2d.4 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | addneintr2d | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | addcomd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | addcand.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | addneintr2d.4 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 5 | 1 2 3 | addcan2d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 6 | 5 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) ↔ 𝐴 ≠ 𝐵 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ≠ ( 𝐵 + 𝐶 ) ) |