This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetfval.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetfval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetfval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetfval.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
| mdetfval.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| mdetfval.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| mdetfval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetfval.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | mdetleib2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetfval.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetfval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetfval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mdetfval.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 5 | mdetfval.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 6 | mdetfval.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 7 | mdetfval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetfval.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | |
| 9 | 1 2 3 4 5 6 7 8 | mdetleib | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 13 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CMnd ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
| 16 | 2 3 | matrcl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 18 | 17 | simpld | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 19 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 20 | 19 4 | symgbasfi | ⊢ ( 𝑁 ∈ Fin → 𝑃 ∈ Fin ) |
| 21 | 18 20 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Fin ) |
| 22 | 12 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑅 ∈ Ring ) |
| 23 | 5 6 | coeq12i | ⊢ ( 𝑌 ∘ 𝑆 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) |
| 24 | zrhpsgnmhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) | |
| 25 | 23 24 | eqeltrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( 𝑌 ∘ 𝑆 ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 26 | 12 18 25 | syl2an2r | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 ∘ 𝑆 ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 27 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 28 | 27 11 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 29 | 4 28 | mhmf | ⊢ ( ( 𝑌 ∘ 𝑆 ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) → ( 𝑌 ∘ 𝑆 ) : 𝑃 ⟶ ( Base ‘ 𝑅 ) ) |
| 30 | 26 29 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 ∘ 𝑆 ) : 𝑃 ⟶ ( Base ‘ 𝑅 ) ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 8 11 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑈 ) |
| 33 | 8 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝑈 ∈ CMnd ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑈 ∈ CMnd ) |
| 35 | 18 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑁 ∈ Fin ) |
| 36 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) | |
| 37 | 2 11 3 | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 38 | elmapi | ⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 39 | 36 37 38 | 3syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 40 | 39 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 41 | 19 4 | symgbasf1o | ⊢ ( 𝑞 ∈ 𝑃 → 𝑞 : 𝑁 –1-1-onto→ 𝑁 ) |
| 42 | 41 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑞 : 𝑁 –1-1-onto→ 𝑁 ) |
| 43 | f1of | ⊢ ( 𝑞 : 𝑁 –1-1-onto→ 𝑁 → 𝑞 : 𝑁 ⟶ 𝑁 ) | |
| 44 | 42 43 | syl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑞 : 𝑁 ⟶ 𝑁 ) |
| 45 | 44 | ffvelcdmda | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( 𝑞 ‘ 𝑦 ) ∈ 𝑁 ) |
| 46 | simpr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → 𝑦 ∈ 𝑁 ) | |
| 47 | 40 45 46 | fovcdmd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → ∀ 𝑦 ∈ 𝑁 ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 | 32 34 35 48 | gsummptcl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 | 11 7 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 51 | 22 31 49 50 | syl3anc | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝑃 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 52 | 51 | ralrimiva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑞 ∈ 𝑃 ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 53 | eqid | ⊢ ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) = ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) | |
| 54 | eqid | ⊢ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) = ( invg ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 55 | 19 | symggrp | ⊢ ( 𝑁 ∈ Fin → ( SymGrp ‘ 𝑁 ) ∈ Grp ) |
| 56 | 18 55 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( SymGrp ‘ 𝑁 ) ∈ Grp ) |
| 57 | 4 54 56 | grpinvf1o | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( invg ‘ ( SymGrp ‘ 𝑁 ) ) : 𝑃 –1-1-onto→ 𝑃 ) |
| 58 | 11 15 21 52 53 57 | gsummptfif1o | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ∘ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ) ) ) |
| 59 | f1of | ⊢ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) : 𝑃 –1-1-onto→ 𝑃 → ( invg ‘ ( SymGrp ‘ 𝑁 ) ) : 𝑃 ⟶ 𝑃 ) | |
| 60 | 57 59 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( invg ‘ ( SymGrp ‘ 𝑁 ) ) : 𝑃 ⟶ 𝑃 ) |
| 61 | 60 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ∈ 𝑃 ) |
| 62 | 60 | feqmptd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( invg ‘ ( SymGrp ‘ 𝑁 ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) ) |
| 63 | eqidd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) = ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ) | |
| 64 | fveq2 | ⊢ ( 𝑞 = ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) ) | |
| 65 | fveq1 | ⊢ ( 𝑞 = ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) → ( 𝑞 ‘ 𝑦 ) = ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) ) | |
| 66 | 65 | oveq1d | ⊢ ( 𝑞 = ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) → ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) = ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) |
| 67 | 66 | mpteq2dv | ⊢ ( 𝑞 = ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) → ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) = ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) |
| 68 | 67 | oveq2d | ⊢ ( 𝑞 = ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) → ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) = ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) |
| 69 | 64 68 | oveq12d | ⊢ ( 𝑞 = ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) |
| 70 | 61 62 63 69 | fmptco | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ∘ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ) |
| 71 | 19 4 54 | symginv | ⊢ ( 𝑝 ∈ 𝑃 → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) = ◡ 𝑝 ) |
| 72 | 71 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) = ◡ 𝑝 ) |
| 73 | 72 | fveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) = ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝑝 ) ) |
| 74 | 12 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑅 ∈ Ring ) |
| 75 | 18 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑁 ∈ Fin ) |
| 76 | simpr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝑃 ) | |
| 77 | 4 5 6 | zrhpsgninv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝑝 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) ) |
| 78 | 74 75 76 77 | syl3anc | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝑝 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) ) |
| 79 | 73 78 | eqtrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) ) |
| 80 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 81 | 33 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑈 ∈ CMnd ) |
| 82 | 39 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 83 | 71 | ad2antlr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) = ◡ 𝑝 ) |
| 84 | 83 | fveq1d | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) = ( ◡ 𝑝 ‘ 𝑦 ) ) |
| 85 | 19 4 | symgbasf1o | ⊢ ( 𝑝 ∈ 𝑃 → 𝑝 : 𝑁 –1-1-onto→ 𝑁 ) |
| 86 | 85 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 : 𝑁 –1-1-onto→ 𝑁 ) |
| 87 | f1ocnv | ⊢ ( 𝑝 : 𝑁 –1-1-onto→ 𝑁 → ◡ 𝑝 : 𝑁 –1-1-onto→ 𝑁 ) | |
| 88 | f1of | ⊢ ( ◡ 𝑝 : 𝑁 –1-1-onto→ 𝑁 → ◡ 𝑝 : 𝑁 ⟶ 𝑁 ) | |
| 89 | 86 87 88 | 3syl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ◡ 𝑝 : 𝑁 ⟶ 𝑁 ) |
| 90 | 89 | ffvelcdmda | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ◡ 𝑝 ‘ 𝑦 ) ∈ 𝑁 ) |
| 91 | 84 90 | eqeltrd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) ∈ 𝑁 ) |
| 92 | simpr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → 𝑦 ∈ 𝑁 ) | |
| 93 | 82 91 92 | fovcdmd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 94 | 93 32 | eleqtrdi | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑁 ) → ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ∈ ( Base ‘ 𝑈 ) ) |
| 95 | 94 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ∀ 𝑦 ∈ 𝑁 ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ∈ ( Base ‘ 𝑈 ) ) |
| 96 | eqid | ⊢ ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) = ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) | |
| 97 | 80 81 75 95 96 86 | gsummptfif1o | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) = ( 𝑈 Σg ( ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ∘ 𝑝 ) ) ) |
| 98 | f1of | ⊢ ( 𝑝 : 𝑁 –1-1-onto→ 𝑁 → 𝑝 : 𝑁 ⟶ 𝑁 ) | |
| 99 | 86 98 | syl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 : 𝑁 ⟶ 𝑁 ) |
| 100 | 99 | ffvelcdmda | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝑁 ) → ( 𝑝 ‘ 𝑥 ) ∈ 𝑁 ) |
| 101 | 99 | feqmptd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 = ( 𝑥 ∈ 𝑁 ↦ ( 𝑝 ‘ 𝑥 ) ) ) |
| 102 | eqidd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) = ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) | |
| 103 | fveq2 | ⊢ ( 𝑦 = ( 𝑝 ‘ 𝑥 ) → ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) = ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) ) | |
| 104 | id | ⊢ ( 𝑦 = ( 𝑝 ‘ 𝑥 ) → 𝑦 = ( 𝑝 ‘ 𝑥 ) ) | |
| 105 | 103 104 | oveq12d | ⊢ ( 𝑦 = ( 𝑝 ‘ 𝑥 ) → ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) = ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) |
| 106 | 100 101 102 105 | fmptco | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ∘ 𝑝 ) = ( 𝑥 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) |
| 107 | 71 | ad2antlr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝑁 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) = ◡ 𝑝 ) |
| 108 | 107 | fveq1d | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝑁 ) → ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) = ( ◡ 𝑝 ‘ ( 𝑝 ‘ 𝑥 ) ) ) |
| 109 | f1ocnvfv1 | ⊢ ( ( 𝑝 : 𝑁 –1-1-onto→ 𝑁 ∧ 𝑥 ∈ 𝑁 ) → ( ◡ 𝑝 ‘ ( 𝑝 ‘ 𝑥 ) ) = 𝑥 ) | |
| 110 | 86 109 | sylan | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝑁 ) → ( ◡ 𝑝 ‘ ( 𝑝 ‘ 𝑥 ) ) = 𝑥 ) |
| 111 | 108 110 | eqtrd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝑁 ) → ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) = 𝑥 ) |
| 112 | 111 | oveq1d | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝑁 ) → ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) 𝑀 ( 𝑝 ‘ 𝑥 ) ) = ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) |
| 113 | 112 | mpteq2dva | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑥 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ ( 𝑝 ‘ 𝑥 ) ) 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) |
| 114 | 106 113 | eqtrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ∘ 𝑝 ) = ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) |
| 115 | 114 | oveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑈 Σg ( ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ∘ 𝑝 ) ) = ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) |
| 116 | 97 115 | eqtrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) = ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) |
| 117 | 79 116 | oveq12d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) |
| 118 | 117 | mpteq2dva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝑝 ) ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) |
| 119 | 70 118 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ∘ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) |
| 120 | 119 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( ( 𝑞 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑞 ) · ( 𝑈 Σg ( 𝑦 ∈ 𝑁 ↦ ( ( 𝑞 ‘ 𝑦 ) 𝑀 𝑦 ) ) ) ) ) ∘ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) ) |
| 121 | 10 58 120 | 3eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑥 𝑀 ( 𝑝 ‘ 𝑥 ) ) ) ) ) ) ) ) |