This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptcl.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| gsummptcl.e | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ) | ||
| gsummptfif1o.f | ⊢ 𝐹 = ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) | ||
| gsummptfif1o.h | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝑁 ) | ||
| Assertion | gsummptfif1o | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | gsummptcl.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 4 | gsummptcl.e | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ) | |
| 5 | gsummptfif1o.f | ⊢ 𝐹 = ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) | |
| 6 | gsummptfif1o.h | ⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝑁 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | 5 | fmpt | ⊢ ( ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ↔ 𝐹 : 𝑁 ⟶ 𝐵 ) |
| 9 | 4 8 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝑁 ⟶ 𝐵 ) |
| 10 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 11 | 9 3 10 | fdmfifsupp | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
| 12 | 1 7 2 3 9 11 6 | gsumf1o | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |