This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zrhpsgnmhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝐴 ) ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 2 | 1 | zrhrhm | ⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 3 | eqid | ⊢ ( mulGrp ‘ ℤring ) = ( mulGrp ‘ ℤring ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | 3 4 | rhmmhm | ⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 7 | eqid | ⊢ ( SymGrp ‘ 𝐴 ) = ( SymGrp ‘ 𝐴 ) | |
| 8 | eqid | ⊢ ( pmSgn ‘ 𝐴 ) = ( pmSgn ‘ 𝐴 ) | |
| 9 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 10 | 7 8 9 | psgnghm2 | ⊢ ( 𝐴 ∈ Fin → ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 11 | ghmmhm | ⊢ ( ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ Fin → ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 13 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 14 | 13 | cnmsgnsubg | ⊢ { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 15 | subgsubm | ⊢ ( { 1 , - 1 } ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → { 1 , - 1 } ∈ ( SubMnd ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ { 1 , - 1 } ∈ ( SubMnd ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 17 | cnring | ⊢ ℂfld ∈ Ring | |
| 18 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 19 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 20 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 21 | 18 19 20 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 22 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 23 | 21 22 | unitsubm | ⊢ ( ℂfld ∈ Ring → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 24 | 13 | subsubm | ⊢ ( ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( { 1 , - 1 } ∈ ( SubMnd ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ↔ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) ) ) |
| 25 | 17 23 24 | mp2b | ⊢ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ↔ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) ) |
| 26 | 16 25 | mpbi | ⊢ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ { 1 , - 1 } ⊆ ( ℂ ∖ { 0 } ) ) |
| 27 | 26 | simpli | ⊢ { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| 28 | 1z | ⊢ 1 ∈ ℤ | |
| 29 | neg1z | ⊢ - 1 ∈ ℤ | |
| 30 | prssi | ⊢ ( ( 1 ∈ ℤ ∧ - 1 ∈ ℤ ) → { 1 , - 1 } ⊆ ℤ ) | |
| 31 | 28 29 30 | mp2an | ⊢ { 1 , - 1 } ⊆ ℤ |
| 32 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 33 | 22 | subrgsubm | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 34 | zringmpg | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring ) | |
| 35 | 34 | eqcomi | ⊢ ( mulGrp ‘ ℤring ) = ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) |
| 36 | 35 | subsubm | ⊢ ( ℤ ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ↔ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ { 1 , - 1 } ⊆ ℤ ) ) ) |
| 37 | 32 33 36 | mp2b | ⊢ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ↔ ( { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ { 1 , - 1 } ⊆ ℤ ) ) |
| 38 | 27 31 37 | mpbir2an | ⊢ { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) |
| 39 | zex | ⊢ ℤ ∈ V | |
| 40 | ressabs | ⊢ ( ( ℤ ∈ V ∧ { 1 , - 1 } ⊆ ℤ ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 41 | 39 31 40 | mp2an | ⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 42 | 34 | oveq1i | ⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℤring ) ↾s { 1 , - 1 } ) |
| 43 | 41 42 | eqtr3i | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℤring ) ↾s { 1 , - 1 } ) |
| 44 | 43 | resmhm2 | ⊢ ( ( ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ { 1 , - 1 } ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) → ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ ℤring ) ) ) |
| 45 | 12 38 44 | sylancl | ⊢ ( 𝐴 ∈ Fin → ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ ℤring ) ) ) |
| 46 | mhmco | ⊢ ( ( ( ℤRHom ‘ 𝑅 ) ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑅 ) ) ∧ ( pmSgn ‘ 𝐴 ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ ℤring ) ) ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝐴 ) ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) | |
| 47 | 6 45 46 | syl2an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝐴 ) ) ∈ ( ( SymGrp ‘ 𝐴 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |