This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matrcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matrcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| Assertion | matrcl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matrcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matrcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | n0i | ⊢ ( 𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 4 | df-mat | ⊢ Mat = ( 𝑎 ∈ Fin , 𝑏 ∈ V ↦ ( ( 𝑏 freeLMod ( 𝑎 × 𝑎 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑏 maMul 〈 𝑎 , 𝑎 , 𝑎 〉 ) 〉 ) ) | |
| 5 | 4 | mpondm0 | ⊢ ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑁 Mat 𝑅 ) = ∅ ) |
| 6 | 1 5 | eqtrid | ⊢ ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → 𝐴 = ∅ ) |
| 7 | 6 | fveq2d | ⊢ ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ 𝐴 ) = ( Base ‘ ∅ ) ) |
| 8 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 9 | 7 2 8 | 3eqtr4g | ⊢ ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 10 | 3 9 | nsyl2 | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |