This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Full substitution of our determinant definition (also known as Leibniz' Formula, expanding by columns). Proposition 4.6 in Lang p. 514. (Contributed by Stefan O'Rear, 3-Oct-2015) (Revised by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetfval.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetfval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetfval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetfval.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
| mdetfval.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| mdetfval.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| mdetfval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetfval.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | mdetleib | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetfval.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetfval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetfval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mdetfval.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 5 | mdetfval.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 6 | mdetfval.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 7 | mdetfval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetfval.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | |
| 9 | oveq | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) = ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) | |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑚 = 𝑀 → ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) |
| 11 | 10 | oveq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) = ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) |
| 13 | 12 | mpteq2dv | ⊢ ( 𝑚 = 𝑀 → ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |
| 15 | 1 2 3 4 5 6 7 8 | mdetfval | ⊢ 𝐷 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 16 | ovex | ⊢ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ∈ V | |
| 17 | 14 15 16 | fvmpt | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |