This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgbasfi | ⊢ ( 𝐴 ∈ Fin → 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | mapfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( 𝐴 ↑m 𝐴 ) ∈ Fin ) | |
| 4 | 3 | anidms | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ↑m 𝐴 ) ∈ Fin ) |
| 5 | 1 2 | symgbas | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
| 6 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 → 𝑓 : 𝐴 ⟶ 𝐴 ) | |
| 7 | 6 | ss2abi | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } |
| 8 | 5 7 | eqsstri | ⊢ 𝐵 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } |
| 9 | mapvalg | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( 𝐴 ↑m 𝐴 ) = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) | |
| 10 | 9 | anidms | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ↑m 𝐴 ) = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) |
| 11 | 8 10 | sseqtrrid | ⊢ ( 𝐴 ∈ Fin → 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) ) |
| 12 | 4 11 | ssfid | ⊢ ( 𝐴 ∈ Fin → 𝐵 ∈ Fin ) |