This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptcl.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| gsummptcl.e | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ) | ||
| Assertion | gsummptcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | gsummptcl.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 4 | gsummptcl.e | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) = ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) | |
| 7 | 6 | fmpt | ⊢ ( ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ↔ ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) : 𝑁 ⟶ 𝐵 ) |
| 8 | 4 7 | sylib | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) : 𝑁 ⟶ 𝐵 ) |
| 9 | 6 | fnmpt | ⊢ ( ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) Fn 𝑁 ) |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) Fn 𝑁 ) |
| 11 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 12 | 10 3 11 | fndmfifsupp | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 13 | 1 5 2 3 8 12 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) ) ∈ 𝐵 ) |