This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014) (Proof shortened by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpinv11.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| Assertion | grpinvf1o | ⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | grpinv11.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | 1 2 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝐵 ) |
| 6 | 5 | ffnd | ⊢ ( 𝜑 → 𝑁 Fn 𝐵 ) |
| 7 | 1 2 | grpinvcnv | ⊢ ( 𝐺 ∈ Grp → ◡ 𝑁 = 𝑁 ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ◡ 𝑁 = 𝑁 ) |
| 9 | 8 | fneq1d | ⊢ ( 𝜑 → ( ◡ 𝑁 Fn 𝐵 ↔ 𝑁 Fn 𝐵 ) ) |
| 10 | 6 9 | mpbird | ⊢ ( 𝜑 → ◡ 𝑁 Fn 𝐵 ) |
| 11 | dff1o4 | ⊢ ( 𝑁 : 𝐵 –1-1-onto→ 𝐵 ↔ ( 𝑁 Fn 𝐵 ∧ ◡ 𝑁 Fn 𝐵 ) ) | |
| 12 | 6 10 11 | sylanbrc | ⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ 𝐵 ) |