This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgninv.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| zrhpsgninv.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| zrhpsgninv.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| Assertion | zrhpsgninv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgninv.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | zrhpsgninv.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 3 | zrhpsgninv.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 4 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 5 | 4 3 1 | psgninv | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑆 ‘ ◡ 𝐹 ) = ( 𝑆 ‘ 𝐹 ) ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑆 ‘ ◡ 𝐹 ) = ( 𝑆 ‘ 𝐹 ) ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 8 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 9 | 4 3 8 | psgnghm2 | ⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 11 | 1 10 | ghmf | ⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝑁 ∈ Fin → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 14 | eqid | ⊢ ( invg ‘ ( SymGrp ‘ 𝑁 ) ) = ( invg ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 15 | 4 1 14 | symginv | ⊢ ( 𝐹 ∈ 𝑃 → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) = ◡ 𝐹 ) |
| 17 | 4 | symggrp | ⊢ ( 𝑁 ∈ Fin → ( SymGrp ‘ 𝑁 ) ∈ Grp ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( SymGrp ‘ 𝑁 ) ∈ Grp ) |
| 19 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → 𝐹 ∈ 𝑃 ) | |
| 20 | 1 14 | grpinvcl | ⊢ ( ( ( SymGrp ‘ 𝑁 ) ∈ Grp ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( invg ‘ ( SymGrp ‘ 𝑁 ) ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 22 | 16 21 | eqeltrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ◡ 𝐹 ∈ 𝑃 ) |
| 23 | fvco3 | ⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ ◡ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) | |
| 24 | 13 22 23 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 25 | fvco3 | ⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | |
| 26 | 13 19 25 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 27 | 7 24 26 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ ◡ 𝐹 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) ) |