This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfimdetndef.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| Assertion | nfimdetndef | ⊢ ( 𝑁 ∉ Fin → 𝐷 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfimdetndef.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 5 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ 𝑁 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 9 | 1 2 3 4 5 6 7 8 | mdetfval | ⊢ 𝐷 = ( 𝑚 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 10 | df-nel | ⊢ ( 𝑁 ∉ Fin ↔ ¬ 𝑁 ∈ Fin ) | |
| 11 | 10 | biimpi | ⊢ ( 𝑁 ∉ Fin → ¬ 𝑁 ∈ Fin ) |
| 12 | 11 | intnanrd | ⊢ ( 𝑁 ∉ Fin → ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 13 | matbas0 | ⊢ ( ¬ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑁 ∉ Fin → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ ) |
| 15 | 14 | mpteq1d | ⊢ ( 𝑁 ∉ Fin → ( 𝑚 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 16 | mpt0 | ⊢ ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝑁 ∉ Fin → ( 𝑚 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ∅ ) |
| 18 | 9 17 | eqtrid | ⊢ ( 𝑁 ∉ Fin → 𝐷 = ∅ ) |