This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is in the span of A u. { Y } but not A , then Y is in the span of A u. { X } . (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsolv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsolv.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspsolv.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsolv | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsolv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsolv.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspsolv.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 8 | eqid | ⊢ { 𝑧 ∈ 𝑉 ∣ ∃ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) } = { 𝑧 ∈ 𝑉 ∣ ∃ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) } | |
| 9 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑊 ∈ LMod ) |
| 11 | simpr1 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝐴 ⊆ 𝑉 ) | |
| 12 | simpr2 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑌 ∈ 𝑉 ) | |
| 13 | simpr3 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) | |
| 14 | 13 | eldifad | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ) |
| 15 | 1 2 3 4 5 6 7 8 10 11 12 14 | lspsolvlem | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → ∃ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) |
| 16 | 4 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 18 | simprl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 19 | 10 | adantr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑊 ∈ LMod ) |
| 20 | 12 | adantr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 21 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 22 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 23 | 1 4 7 21 22 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
| 24 | 19 20 23 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
| 25 | 24 | oveq2d | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 26 | 11 | adantr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝐴 ⊆ 𝑉 ) |
| 27 | 20 | snssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → { 𝑌 } ⊆ 𝑉 ) |
| 28 | 26 27 | unssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝐴 ∪ { 𝑌 } ) ⊆ 𝑉 ) |
| 29 | 1 3 | lspssv | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑌 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ⊆ 𝑉 ) |
| 30 | 19 28 29 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ⊆ 𝑉 ) |
| 31 | 30 | ssdifssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ⊆ 𝑉 ) |
| 32 | 13 | adantr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) |
| 33 | 31 32 | sseldd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 34 | 1 6 22 | lmod0vrid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑋 ) |
| 35 | 19 33 34 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑋 ) |
| 36 | 25 35 | eqtrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = 𝑋 ) |
| 37 | 36 32 | eqeltrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) |
| 38 | 37 | eldifbd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ¬ ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) |
| 39 | simprr | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) | |
| 40 | oveq1 | ⊢ ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) | |
| 41 | 40 | oveq2d | ⊢ ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 42 | 41 | eleq1d | ⊢ ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ↔ ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) |
| 43 | 39 42 | syl5ibcom | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) |
| 44 | 43 | necon3bd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ¬ ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) → 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 45 | 38 44 | mpd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 46 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 47 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 48 | eqid | ⊢ ( invr ‘ ( Scalar ‘ 𝑊 ) ) = ( invr ‘ ( Scalar ‘ 𝑊 ) ) | |
| 49 | 5 21 46 47 48 | drnginvrl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 50 | 17 18 45 49 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 51 | 50 | oveq1d | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 52 | 5 21 48 | drnginvrcl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 53 | 17 18 45 52 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 | 1 4 7 5 46 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 55 | 19 53 18 20 54 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 56 | 1 4 7 47 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 57 | 19 20 56 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 58 | 51 55 57 | 3eqtr3d | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = 𝑌 ) |
| 59 | 33 | snssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → { 𝑋 } ⊆ 𝑉 ) |
| 60 | 26 59 | unssd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ) |
| 61 | 1 2 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 62 | 19 60 61 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 63 | 1 4 7 5 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 64 | 19 18 20 63 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 65 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 66 | 1 6 65 | lmodvpncan | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 67 | 19 64 33 66 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 68 | 1 6 | lmodcom | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 69 | 19 64 33 68 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 70 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑋 } ) | |
| 71 | 70 | a1i | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝐴 ⊆ ( 𝐴 ∪ { 𝑋 } ) ) |
| 72 | 1 3 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑋 } ) ) → ( 𝑁 ‘ 𝐴 ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 73 | 19 60 71 72 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑁 ‘ 𝐴 ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 74 | 73 39 | sseldd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 75 | 69 74 | eqeltrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 76 | 1 3 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( 𝐴 ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 77 | 19 60 76 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝐴 ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 78 | snidg | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) | |
| 79 | elun2 | ⊢ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( 𝐴 ∪ { 𝑋 } ) ) | |
| 80 | 33 78 79 | 3syl | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ ( 𝐴 ∪ { 𝑋 } ) ) |
| 81 | 77 80 | sseldd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 82 | 65 2 | lssvsubcl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) ∧ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 83 | 19 62 75 81 82 | syl22anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 84 | 67 83 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 85 | 4 7 5 2 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 86 | 19 62 53 84 85 | syl22anc | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 87 | 58 86 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 88 | 15 87 | rexlimddv | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |