This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodcom.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodcom.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | lmodcom | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodcom.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodcom.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 4 5 6 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 10 | 4 5 9 | lmodacl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | 3 8 8 10 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 13 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) | |
| 14 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 15 | 1 2 4 14 5 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 16 | 3 11 12 13 15 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) = ( ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 17 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 18 | 1 2 4 14 5 9 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 + 𝑌 ) ∈ 𝑉 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) ) ) |
| 19 | 3 8 8 17 18 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) ) ) |
| 20 | 16 19 | eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) ) ) |
| 21 | 1 2 4 14 5 9 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 22 | 3 8 8 12 21 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 23 | 1 4 14 6 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 24 | 3 12 23 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 25 | 24 24 | oveq12d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) = ( 𝑋 + 𝑋 ) ) |
| 26 | 22 25 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
| 27 | 1 2 4 14 5 9 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 28 | 3 8 8 13 27 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 29 | 1 4 14 6 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 30 | 3 13 29 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 31 | 30 30 | oveq12d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑌 + 𝑌 ) ) |
| 32 | 28 31 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( 𝑌 + 𝑌 ) ) |
| 33 | 26 32 | oveq12d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 34 | 1 4 14 6 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑌 ) ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| 35 | 3 17 34 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| 36 | 35 35 | oveq12d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) + ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 + 𝑌 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| 37 | 20 33 36 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| 38 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 𝑋 ) ∈ 𝑉 ) |
| 39 | 3 12 12 38 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑋 ) ∈ 𝑉 ) |
| 40 | 1 2 | lmodass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑋 + 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 41 | 3 39 13 13 40 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 42 | 1 2 | lmodass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑋 + 𝑌 ) + 𝑋 ) + 𝑌 ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| 43 | 3 17 12 13 42 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 𝑋 + 𝑌 ) + 𝑋 ) + 𝑌 ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| 44 | 37 41 43 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( ( 𝑋 + 𝑌 ) + 𝑋 ) + 𝑌 ) ) |
| 45 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 46 | 3 45 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ Grp ) |
| 47 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) ∈ 𝑉 ) |
| 48 | 3 39 13 47 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) ∈ 𝑉 ) |
| 49 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 + 𝑌 ) + 𝑋 ) ∈ 𝑉 ) |
| 50 | 3 17 12 49 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑌 ) + 𝑋 ) ∈ 𝑉 ) |
| 51 | 1 2 | grprcan | ⊢ ( ( 𝑊 ∈ Grp ∧ ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) ∈ 𝑉 ∧ ( ( 𝑋 + 𝑌 ) + 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( ( 𝑋 + 𝑌 ) + 𝑋 ) + 𝑌 ) ↔ ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( ( 𝑋 + 𝑌 ) + 𝑋 ) ) ) |
| 52 | 46 48 50 13 51 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( ( 𝑋 + 𝑌 ) + 𝑋 ) + 𝑌 ) ↔ ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( ( 𝑋 + 𝑌 ) + 𝑋 ) ) ) |
| 53 | 44 52 | mpbid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( ( 𝑋 + 𝑌 ) + 𝑋 ) ) |
| 54 | 1 2 | lmodass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( 𝑋 + ( 𝑋 + 𝑌 ) ) ) |
| 55 | 3 12 12 13 54 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( 𝑋 + ( 𝑋 + 𝑌 ) ) ) |
| 56 | 1 2 | lmodass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑋 ) = ( 𝑋 + ( 𝑌 + 𝑋 ) ) ) |
| 57 | 3 12 13 12 56 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑌 ) + 𝑋 ) = ( 𝑋 + ( 𝑌 + 𝑋 ) ) ) |
| 58 | 53 55 57 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + 𝑋 ) ) ) |
| 59 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 + 𝑋 ) ∈ 𝑉 ) |
| 60 | 59 | 3com23 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 + 𝑋 ) ∈ 𝑉 ) |
| 61 | 1 2 | lmodlcan | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ ( 𝑌 + 𝑋 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + 𝑋 ) ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 62 | 3 17 60 12 61 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + 𝑋 ) ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 63 | 58 62 | mpbid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |