This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span preserves subset ordering. ( spanss analog.) (Contributed by NM, 11-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) ∧ 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑇 ⊆ 𝑈 ) | |
| 4 | sstr2 | ⊢ ( 𝑇 ⊆ 𝑈 → ( 𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) ∧ 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑈 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) ) |
| 6 | 5 | ss2rabdv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ⊆ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑇 ⊆ 𝑡 } ) |
| 7 | intss | ⊢ ( { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ⊆ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑇 ⊆ 𝑡 } → ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑇 ⊆ 𝑡 } ⊆ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑇 ⊆ 𝑡 } ⊆ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ) |
| 9 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → 𝑊 ∈ LMod ) | |
| 10 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ⊆ 𝑈 ) | |
| 11 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → 𝑈 ⊆ 𝑉 ) | |
| 12 | 10 11 | sstrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ⊆ 𝑉 ) |
| 13 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 14 | 1 13 2 | lspval | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑇 ⊆ 𝑡 } ) |
| 15 | 9 12 14 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑇 ⊆ 𝑡 } ) |
| 16 | 1 13 2 | lspval | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑊 ) ∣ 𝑈 ⊆ 𝑡 } ) |
| 18 | 8 15 17 | 3sstr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |