This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a set of vectors is a subspace. ( spancl analog.) (Contributed by NM, 9-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | 1 2 3 | lspf | ⊢ ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉 ⟶ 𝑆 ) |
| 5 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 6 | 5 | elpw2 | ⊢ ( 𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉 ) |
| 7 | 6 | biimpri | ⊢ ( 𝑈 ⊆ 𝑉 → 𝑈 ∈ 𝒫 𝑉 ) |
| 8 | ffvelcdm | ⊢ ( ( 𝑁 : 𝒫 𝑉 ⟶ 𝑆 ∧ 𝑈 ∈ 𝒫 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝑆 ) | |
| 9 | 4 7 8 | syl2an | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝑆 ) |