This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs by lspsolv . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssacsex.1 | ⊢ 𝐴 = ( LSubSp ‘ 𝑊 ) | |
| lssacsex.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| lssacsex.3 | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | ||
| Assertion | lssacsex | ⊢ ( 𝑊 ∈ LVec → ( 𝐴 ∈ ( ACS ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssacsex.1 | ⊢ 𝐴 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lssacsex.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | lssacsex.3 | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 4 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 5 | 3 1 | lssacs | ⊢ ( 𝑊 ∈ LMod → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ LVec → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 7 | simplll | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑊 ∈ LVec ) | |
| 8 | simpllr | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑠 ∈ 𝒫 𝑋 ) | |
| 9 | 8 | elpwid | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑠 ⊆ 𝑋 ) |
| 10 | simplr | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑦 ∈ 𝑋 ) | |
| 11 | simpr | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) | |
| 12 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 13 | 1 12 2 | mrclsp | ⊢ ( 𝑊 ∈ LMod → ( LSpan ‘ 𝑊 ) = 𝑁 ) |
| 14 | 7 4 13 | 3syl | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → ( LSpan ‘ 𝑊 ) = 𝑁 ) |
| 15 | 14 | fveq1d | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑦 } ) ) = ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ) |
| 16 | 14 | fveq1d | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ 𝑠 ) = ( 𝑁 ‘ 𝑠 ) ) |
| 17 | 15 16 | difeq12d | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( ( LSpan ‘ 𝑊 ) ‘ 𝑠 ) ) = ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) |
| 18 | 11 17 | eleqtrrd | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑧 ∈ ( ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( ( LSpan ‘ 𝑊 ) ‘ 𝑠 ) ) ) |
| 19 | 3 1 12 | lspsolv | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑠 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ ( ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( ( LSpan ‘ 𝑊 ) ‘ 𝑠 ) ) ) ) → 𝑦 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 20 | 7 9 10 18 19 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑦 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 21 | 14 | fveq1d | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 22 | 20 21 | eleqtrd | ⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) → 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 23 | 22 | ralrimiva | ⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 24 | 23 | ralrimiva | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝒫 𝑋 ) → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝑊 ∈ LVec → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 26 | 6 25 | jca | ⊢ ( 𝑊 ∈ LVec → ( 𝐴 ∈ ( ACS ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) ) |