This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdivlti | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 2 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → e ≤ 𝐴 ) | |
| 3 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 4 | ere | ⊢ e ∈ ℝ | |
| 5 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 6 | lelttr | ⊢ ( ( e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( e ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → e < 𝐵 ) ) | |
| 7 | 4 5 1 6 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( e ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → e < 𝐵 ) ) |
| 8 | 2 3 7 | mp2and | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → e < 𝐵 ) |
| 9 | epos | ⊢ 0 < e | |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < e ∧ e < 𝐵 ) → 0 < 𝐵 ) ) | |
| 12 | 10 4 1 11 | mp3an12i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 0 < e ∧ e < 𝐵 ) → 0 < 𝐵 ) ) |
| 13 | 9 12 | mpani | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( e < 𝐵 → 0 < 𝐵 ) ) |
| 14 | 8 13 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) |
| 15 | 1 14 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ+ ) |
| 16 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < e ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) ) | |
| 17 | 10 4 5 16 | mp3an12i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 0 < e ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) ) |
| 18 | 9 17 | mpani | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( e ≤ 𝐴 → 0 < 𝐴 ) ) |
| 19 | 2 18 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 0 < 𝐴 ) |
| 20 | 5 19 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ+ ) |
| 21 | 15 20 | rpdivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 / 𝐴 ) ∈ ℝ+ ) |
| 22 | relogcl | ⊢ ( ( 𝐵 / 𝐴 ) ∈ ℝ+ → ( log ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ) |
| 24 | 1 20 | rerpdivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 / 𝐴 ) ∈ ℝ ) |
| 25 | 1re | ⊢ 1 ∈ ℝ | |
| 26 | resubcl | ⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ ) |
| 28 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 29 | 20 28 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 30 | 27 29 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 | reeflog | ⊢ ( ( 𝐵 / 𝐴 ) ∈ ℝ+ → ( exp ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) | |
| 32 | 21 31 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( exp ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) = ( 𝐵 / 𝐴 ) ) |
| 33 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 34 | 24 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 35 | pncan3 | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐵 / 𝐴 ) ∈ ℂ ) → ( 1 + ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( 𝐵 / 𝐴 ) ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 + ( ( 𝐵 / 𝐴 ) − 1 ) ) = ( 𝐵 / 𝐴 ) ) |
| 37 | 32 36 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( exp ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) = ( 1 + ( ( 𝐵 / 𝐴 ) − 1 ) ) ) |
| 38 | 5 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 39 | 38 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 40 | 39 3 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 · 𝐴 ) < 𝐵 ) |
| 41 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 1 ∈ ℝ ) | |
| 42 | ltmuldiv | ⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 1 · 𝐴 ) < 𝐵 ↔ 1 < ( 𝐵 / 𝐴 ) ) ) | |
| 43 | 41 1 5 19 42 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 1 · 𝐴 ) < 𝐵 ↔ 1 < ( 𝐵 / 𝐴 ) ) ) |
| 44 | 40 43 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 1 < ( 𝐵 / 𝐴 ) ) |
| 45 | difrp | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝐵 / 𝐴 ) ∈ ℝ ) → ( 1 < ( 𝐵 / 𝐴 ) ↔ ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ+ ) ) | |
| 46 | 25 24 45 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐵 / 𝐴 ) ↔ ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ+ ) ) |
| 47 | 44 46 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ+ ) |
| 48 | efgt1p | ⊢ ( ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ+ → ( 1 + ( ( 𝐵 / 𝐴 ) − 1 ) ) < ( exp ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 + ( ( 𝐵 / 𝐴 ) − 1 ) ) < ( exp ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) |
| 50 | 37 49 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( exp ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) < ( exp ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) |
| 51 | eflt | ⊢ ( ( ( log ‘ ( 𝐵 / 𝐴 ) ) ∈ ℝ ∧ ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ ) → ( ( log ‘ ( 𝐵 / 𝐴 ) ) < ( ( 𝐵 / 𝐴 ) − 1 ) ↔ ( exp ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) < ( exp ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) ) | |
| 52 | 23 27 51 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ ( 𝐵 / 𝐴 ) ) < ( ( 𝐵 / 𝐴 ) − 1 ) ↔ ( exp ‘ ( log ‘ ( 𝐵 / 𝐴 ) ) ) < ( exp ‘ ( ( 𝐵 / 𝐴 ) − 1 ) ) ) ) |
| 53 | 50 52 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ ( 𝐵 / 𝐴 ) ) < ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 54 | 27 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℂ ) |
| 55 | 54 | mulridd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 / 𝐴 ) − 1 ) · 1 ) = ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 56 | df-e | ⊢ e = ( exp ‘ 1 ) | |
| 57 | reeflog | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 58 | 20 57 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 59 | 2 58 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → e ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) |
| 60 | 56 59 | eqbrtrrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( exp ‘ 1 ) ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) |
| 61 | efle | ⊢ ( ( 1 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 1 ≤ ( log ‘ 𝐴 ) ↔ ( exp ‘ 1 ) ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 62 | 25 29 61 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 ≤ ( log ‘ 𝐴 ) ↔ ( exp ‘ 1 ) ≤ ( exp ‘ ( log ‘ 𝐴 ) ) ) ) |
| 63 | 60 62 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 1 ≤ ( log ‘ 𝐴 ) ) |
| 64 | posdif | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝐵 / 𝐴 ) ∈ ℝ ) → ( 1 < ( 𝐵 / 𝐴 ) ↔ 0 < ( ( 𝐵 / 𝐴 ) − 1 ) ) ) | |
| 65 | 25 24 64 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐵 / 𝐴 ) ↔ 0 < ( ( 𝐵 / 𝐴 ) − 1 ) ) ) |
| 66 | 44 65 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 0 < ( ( 𝐵 / 𝐴 ) − 1 ) ) |
| 67 | lemul2 | ⊢ ( ( 1 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ∧ ( ( ( 𝐵 / 𝐴 ) − 1 ) ∈ ℝ ∧ 0 < ( ( 𝐵 / 𝐴 ) − 1 ) ) ) → ( 1 ≤ ( log ‘ 𝐴 ) ↔ ( ( ( 𝐵 / 𝐴 ) − 1 ) · 1 ) ≤ ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) ) ) | |
| 68 | 41 29 27 66 67 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 ≤ ( log ‘ 𝐴 ) ↔ ( ( ( 𝐵 / 𝐴 ) − 1 ) · 1 ) ≤ ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) ) ) |
| 69 | 63 68 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 / 𝐴 ) − 1 ) · 1 ) ≤ ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) ) |
| 70 | 55 69 | eqbrtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 / 𝐴 ) − 1 ) ≤ ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) ) |
| 71 | 23 27 30 53 70 | ltletrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ ( 𝐵 / 𝐴 ) ) < ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) ) |
| 72 | relogdiv | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) | |
| 73 | 15 20 72 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ ( 𝐵 / 𝐴 ) ) = ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) ) |
| 74 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 1 ∈ ℂ ) | |
| 75 | 29 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 76 | 34 74 75 | subdird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) = ( ( ( 𝐵 / 𝐴 ) · ( log ‘ 𝐴 ) ) − ( 1 · ( log ‘ 𝐴 ) ) ) ) |
| 77 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 78 | 20 | rpne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≠ 0 ) |
| 79 | 77 38 75 78 | div32d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 / 𝐴 ) · ( log ‘ 𝐴 ) ) = ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 80 | 75 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 1 · ( log ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
| 81 | 79 80 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 / 𝐴 ) · ( log ‘ 𝐴 ) ) − ( 1 · ( log ‘ 𝐴 ) ) ) = ( ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) − ( log ‘ 𝐴 ) ) ) |
| 82 | 76 81 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 / 𝐴 ) − 1 ) · ( log ‘ 𝐴 ) ) = ( ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) − ( log ‘ 𝐴 ) ) ) |
| 83 | 71 73 82 | 3brtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) < ( ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) − ( log ‘ 𝐴 ) ) ) |
| 84 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 85 | 15 84 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 86 | 29 20 | rerpdivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 87 | 1 86 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ∈ ℝ ) |
| 88 | 85 87 29 | ltsub1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐵 ) < ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ↔ ( ( log ‘ 𝐵 ) − ( log ‘ 𝐴 ) ) < ( ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) − ( log ‘ 𝐴 ) ) ) ) |
| 89 | 83 88 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( log ‘ 𝐵 ) < ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 90 | 85 86 15 | ltdivmuld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ↔ ( log ‘ 𝐵 ) < ( 𝐵 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) ) |
| 91 | 89 90 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) |