This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( exp ‘ 𝐴 ) < ( exp ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | ⊢ ⊤ | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝐴 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝐵 ) ) | |
| 5 | ssid | ⊢ ℝ ⊆ ℝ | |
| 6 | reefcl | ⊢ ( 𝑥 ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( exp ‘ 𝑥 ) ∈ ℝ ) |
| 8 | simp2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) | |
| 9 | simp1 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) | |
| 10 | 8 9 | resubcld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ ) |
| 11 | posdif | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 0 < ( 𝑦 − 𝑥 ) ) ) | |
| 12 | 11 | biimp3a | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 < ( 𝑦 − 𝑥 ) ) |
| 13 | 10 12 | elrpd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ+ ) |
| 14 | efgt1 | ⊢ ( ( 𝑦 − 𝑥 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ) |
| 16 | 9 | reefcld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ 𝑥 ) ∈ ℝ ) |
| 17 | 10 | reefcld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ ) |
| 18 | efgt0 | ⊢ ( 𝑥 ∈ ℝ → 0 < ( exp ‘ 𝑥 ) ) | |
| 19 | 9 18 | syl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 < ( exp ‘ 𝑥 ) ) |
| 20 | ltmulgt11 | ⊢ ( ( ( exp ‘ 𝑥 ) ∈ ℝ ∧ ( exp ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ ∧ 0 < ( exp ‘ 𝑥 ) ) → ( 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ↔ ( exp ‘ 𝑥 ) < ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) ) | |
| 21 | 16 17 19 20 | syl3anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ↔ ( exp ‘ 𝑥 ) < ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 22 | 15 21 | mpbid | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ 𝑥 ) < ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 23 | 9 | recnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℂ ) |
| 24 | 10 | recnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
| 25 | efadd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑦 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ ( 𝑥 + ( 𝑦 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 27 | 8 | recnd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℂ ) |
| 28 | 23 27 | pncan3d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑥 + ( 𝑦 − 𝑥 ) ) = 𝑦 ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ ( 𝑥 + ( 𝑦 − 𝑥 ) ) ) = ( exp ‘ 𝑦 ) ) |
| 30 | 26 29 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) = ( exp ‘ 𝑦 ) ) |
| 31 | 22 30 | breqtrd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) |
| 32 | 31 | 3expia | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 → ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
| 33 | 32 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 < 𝑦 → ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
| 34 | 2 3 4 5 7 33 | ltord1 | ⊢ ( ( ⊤ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 𝐵 ↔ ( exp ‘ 𝐴 ) < ( exp ‘ 𝐵 ) ) ) |
| 35 | 1 34 | mpan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( exp ‘ 𝐴 ) < ( exp ‘ 𝐵 ) ) ) |