This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efgt1p | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + 𝐴 ) < ( exp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 2 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℕ0 ) |
| 5 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 8 | 7 | eftval | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) |
| 9 | 3 8 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) |
| 10 | eft0val | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) | |
| 11 | 9 10 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = 1 ) |
| 12 | 6 11 | seq1i | ⊢ ( 𝐴 ∈ ℂ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 0 ) = 1 ) |
| 13 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 14 | 7 | eftval | ⊢ ( 1 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) ) |
| 15 | 13 14 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) |
| 16 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 17 | 16 | oveq2i | ⊢ ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = ( ( 𝐴 ↑ 1 ) / 1 ) |
| 18 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / 1 ) = ( 𝐴 / 1 ) ) |
| 20 | div1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) | |
| 21 | 19 20 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / 1 ) = 𝐴 ) |
| 22 | 17 21 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝐴 ) |
| 23 | 15 22 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = 𝐴 ) |
| 24 | 2 4 5 12 23 | seqp1d | ⊢ ( 𝐴 ∈ ℂ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) = ( 1 + 𝐴 ) ) |
| 25 | 1 24 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) = ( 1 + 𝐴 ) ) |
| 26 | id | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) | |
| 27 | 13 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℕ0 ) |
| 28 | 7 26 27 | effsumlt | ⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) < ( exp ‘ 𝐴 ) ) |
| 29 | 25 28 | eqbrtrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + 𝐴 ) < ( exp ‘ 𝐴 ) ) |