This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
| 4 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 5 | reefcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) | |
| 6 | reefcl | ⊢ ( 𝐵 ∈ ℝ → ( exp ‘ 𝐵 ) ∈ ℝ ) | |
| 7 | lenlt | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℝ ∧ ( exp ‘ 𝐵 ) ∈ ℝ ) → ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ↔ ¬ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ↔ ¬ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
| 9 | 3 4 8 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ) ) |