This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdivlti | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. RR ) |
|
| 2 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e <_ A ) |
|
| 3 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A < B ) |
|
| 4 | ere | |- _e e. RR |
|
| 5 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. RR ) |
|
| 6 | lelttr | |- ( ( _e e. RR /\ A e. RR /\ B e. RR ) -> ( ( _e <_ A /\ A < B ) -> _e < B ) ) |
|
| 7 | 4 5 1 6 | mp3an2i | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( _e <_ A /\ A < B ) -> _e < B ) ) |
| 8 | 2 3 7 | mp2and | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e < B ) |
| 9 | epos | |- 0 < _e |
|
| 10 | 0re | |- 0 e. RR |
|
| 11 | lttr | |- ( ( 0 e. RR /\ _e e. RR /\ B e. RR ) -> ( ( 0 < _e /\ _e < B ) -> 0 < B ) ) |
|
| 12 | 10 4 1 11 | mp3an12i | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 0 < _e /\ _e < B ) -> 0 < B ) ) |
| 13 | 9 12 | mpani | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( _e < B -> 0 < B ) ) |
| 14 | 8 13 | mpd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < B ) |
| 15 | 1 14 | elrpd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. RR+ ) |
| 16 | ltletr | |- ( ( 0 e. RR /\ _e e. RR /\ A e. RR ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
|
| 17 | 10 4 5 16 | mp3an12i | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
| 18 | 9 17 | mpani | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( _e <_ A -> 0 < A ) ) |
| 19 | 2 18 | mpd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < A ) |
| 20 | 5 19 | elrpd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. RR+ ) |
| 21 | 15 20 | rpdivcld | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. RR+ ) |
| 22 | relogcl | |- ( ( B / A ) e. RR+ -> ( log ` ( B / A ) ) e. RR ) |
|
| 23 | 21 22 | syl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) e. RR ) |
| 24 | 1 20 | rerpdivcld | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. RR ) |
| 25 | 1re | |- 1 e. RR |
|
| 26 | resubcl | |- ( ( ( B / A ) e. RR /\ 1 e. RR ) -> ( ( B / A ) - 1 ) e. RR ) |
|
| 27 | 24 25 26 | sylancl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. RR ) |
| 28 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 29 | 20 28 | syl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` A ) e. RR ) |
| 30 | 27 29 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) e. RR ) |
| 31 | reeflog | |- ( ( B / A ) e. RR+ -> ( exp ` ( log ` ( B / A ) ) ) = ( B / A ) ) |
|
| 32 | 21 31 | syl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) = ( B / A ) ) |
| 33 | ax-1cn | |- 1 e. CC |
|
| 34 | 24 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. CC ) |
| 35 | pncan3 | |- ( ( 1 e. CC /\ ( B / A ) e. CC ) -> ( 1 + ( ( B / A ) - 1 ) ) = ( B / A ) ) |
|
| 36 | 33 34 35 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 + ( ( B / A ) - 1 ) ) = ( B / A ) ) |
| 37 | 32 36 | eqtr4d | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) = ( 1 + ( ( B / A ) - 1 ) ) ) |
| 38 | 5 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. CC ) |
| 39 | 38 | mullidd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. A ) = A ) |
| 40 | 39 3 | eqbrtrd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. A ) < B ) |
| 41 | 1red | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 e. RR ) |
|
| 42 | ltmuldiv | |- ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) |
|
| 43 | 41 1 5 19 42 | syl112anc | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) |
| 44 | 40 43 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 < ( B / A ) ) |
| 45 | difrp | |- ( ( 1 e. RR /\ ( B / A ) e. RR ) -> ( 1 < ( B / A ) <-> ( ( B / A ) - 1 ) e. RR+ ) ) |
|
| 46 | 25 24 45 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 < ( B / A ) <-> ( ( B / A ) - 1 ) e. RR+ ) ) |
| 47 | 44 46 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. RR+ ) |
| 48 | efgt1p | |- ( ( ( B / A ) - 1 ) e. RR+ -> ( 1 + ( ( B / A ) - 1 ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 + ( ( B / A ) - 1 ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) |
| 50 | 37 49 | eqbrtrd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) |
| 51 | eflt | |- ( ( ( log ` ( B / A ) ) e. RR /\ ( ( B / A ) - 1 ) e. RR ) -> ( ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) <-> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) ) |
|
| 52 | 23 27 51 | syl2anc | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) <-> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) ) |
| 53 | 50 52 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) ) |
| 54 | 27 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. CC ) |
| 55 | 54 | mulridd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. 1 ) = ( ( B / A ) - 1 ) ) |
| 56 | df-e | |- _e = ( exp ` 1 ) |
|
| 57 | reeflog | |- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
|
| 58 | 20 57 | syl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` A ) ) = A ) |
| 59 | 2 58 | breqtrrd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e <_ ( exp ` ( log ` A ) ) ) |
| 60 | 56 59 | eqbrtrrid | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) |
| 61 | efle | |- ( ( 1 e. RR /\ ( log ` A ) e. RR ) -> ( 1 <_ ( log ` A ) <-> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) ) |
|
| 62 | 25 29 61 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 <_ ( log ` A ) <-> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) ) |
| 63 | 60 62 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 <_ ( log ` A ) ) |
| 64 | posdif | |- ( ( 1 e. RR /\ ( B / A ) e. RR ) -> ( 1 < ( B / A ) <-> 0 < ( ( B / A ) - 1 ) ) ) |
|
| 65 | 25 24 64 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 < ( B / A ) <-> 0 < ( ( B / A ) - 1 ) ) ) |
| 66 | 44 65 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < ( ( B / A ) - 1 ) ) |
| 67 | lemul2 | |- ( ( 1 e. RR /\ ( log ` A ) e. RR /\ ( ( ( B / A ) - 1 ) e. RR /\ 0 < ( ( B / A ) - 1 ) ) ) -> ( 1 <_ ( log ` A ) <-> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) ) |
|
| 68 | 41 29 27 66 67 | syl112anc | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 <_ ( log ` A ) <-> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) ) |
| 69 | 63 68 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) |
| 70 | 55 69 | eqbrtrrd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) |
| 71 | 23 27 30 53 70 | ltletrd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) < ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) |
| 72 | relogdiv | |- ( ( B e. RR+ /\ A e. RR+ ) -> ( log ` ( B / A ) ) = ( ( log ` B ) - ( log ` A ) ) ) |
|
| 73 | 15 20 72 | syl2anc | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) = ( ( log ` B ) - ( log ` A ) ) ) |
| 74 | 1cnd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 e. CC ) |
|
| 75 | 29 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` A ) e. CC ) |
| 76 | 34 74 75 | subdird | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) = ( ( ( B / A ) x. ( log ` A ) ) - ( 1 x. ( log ` A ) ) ) ) |
| 77 | 1 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. CC ) |
| 78 | 20 | rpne0d | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A =/= 0 ) |
| 79 | 77 38 75 78 | div32d | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) x. ( log ` A ) ) = ( B x. ( ( log ` A ) / A ) ) ) |
| 80 | 75 | mullidd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. ( log ` A ) ) = ( log ` A ) ) |
| 81 | 79 80 | oveq12d | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) x. ( log ` A ) ) - ( 1 x. ( log ` A ) ) ) = ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) |
| 82 | 76 81 | eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) = ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) |
| 83 | 71 73 82 | 3brtr3d | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) - ( log ` A ) ) < ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) |
| 84 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 85 | 15 84 | syl | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` B ) e. RR ) |
| 86 | 29 20 | rerpdivcld | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` A ) / A ) e. RR ) |
| 87 | 1 86 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B x. ( ( log ` A ) / A ) ) e. RR ) |
| 88 | 85 87 29 | ltsub1d | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) <-> ( ( log ` B ) - ( log ` A ) ) < ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) ) |
| 89 | 83 88 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) ) |
| 90 | 85 86 15 | ltdivmuld | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) ) ) |
| 91 | 89 90 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) |